首页> 外文会议>2013 IEEE International Workshop on Genomic Signal Processing and Statistics >An HMM-based Exome Peak-finding package for RNA epigenome sequencing data
【24h】

An HMM-based Exome Peak-finding package for RNA epigenome sequencing data

机译:基于HMM的Exome峰发现软件包,用于RNA表观基因组测序数据

获取原文
获取原文并翻译 | 示例

摘要

Methylated RNA Immunoprecipatation combined with RNA sequencing (MeRIP-Seq), first developed in two recent studies, is revolutionizing the de novo study of RNA epigenome at a higher resolution. However, this new technology poses unique bioinformatics problems that call for novel and sophisticated statistical computational solutions. Here, we introduce HEP, a Hidden Markov Model (HMM)-based Exome Peak-finding algorithm for predicting transcriptome methylation sites in MeRIP- Seq data. In contrast to ExomPeak, our previously developed MeRIP-Seq analysis software package, HEP is a model-based approach, which enables rigorous statistical inference. To demonstrate the utility of HEP, it was evaluated both on a simulated data set and a real MeRIP-Seq data for m6A methylation. HEP demonstrates a higher sensitivity and specificity in both the simulation test and the real m6A data. In addition, the peaks were further confirmed by biological enrichment and sequence motifs.
机译:甲基化的RNA免疫沉淀与RNA测序(MeRIP-Seq)相结合,最近在两项最新研究中得到了发展,它正在以更高的分辨率彻底颠覆RNA表观基因组的从头研究。但是,这项新技术带来了独特的生物信息学问题,需要新颖而复杂的统计计算解决方案。在这里,我们介绍了HEP,一种基于隐马尔可夫模型(HMM)的外显子峰发现算法,用于预测MeRIP-Seq数据中的转录组甲基化位点。与我们以前开发的MeRIP-Seq分析软件包ExomPeak相比,HEP是基于模型的方法,可以进行严格的统计推断。为了证明HEP的效用,在模拟数据集和真实的MeRIP-Seq数据上对m6A甲基化进行了评估。 HEP在模拟测试和实际m6A数据中均显示出更高的灵敏度和特异性。另外,通过生物富集和序列基序进一步确认了峰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号