首页> 外文会议>2013 IEEE 31st International Conference on Computer Design >Gate delay modeling for pre- and post-silicon timing related tasks for ultra-low power CMOS circuits
【24h】

Gate delay modeling for pre- and post-silicon timing related tasks for ultra-low power CMOS circuits

机译:用于超低功耗CMOS电路的硅时序前后任务的门延迟建模

获取原文
获取原文并翻译 | 示例

摘要

Power is increasingly the primary design constraint for chip designers and one of the main techniques for addressing this concern is aggressive voltage scaling. Device variability increases with voltage scaling and significantly affects gate delays at low voltages. Although existing delay models for near- and sub-threshold circuits capture the effects of variability on gate delays, they do not capture advanced delay phenomenon such as multiple input switching (MIS; also known as near-simultaneous transitions) at inputs of a gate. As a result, most of these gate delay models often grossly underestimate worst case delays, leading to selection of non-critical paths and generation of delay-inferior vectors for post-silicon timing related tasks. In this paper we present extensive experimental results to demonstrate that MIS has significant impact (around 30–40%) on delays of near-and sub-threshold nominal gates. We develop our model which guarantees that the minimum and maximum delay values it computes are guaranteed to bound the corresponding delay values in silicon. We show that our model has practical run-time complexity and works equally well for super-, near- and sub-threshold circuits. In particular, via extensive experimentations we show that our model never underestimates the delay and tightly bounds the actual delays. We also illustrate trade-offs between tightness of such bounds, their impact on validation cost, and runtime complexity.
机译:电源日益成为芯片设计人员的主要设计约束,而解决这一问题的主要技术之一就是积极的电压缩放。器件可变性随电压缩放而增加,并在低电压下显着影响栅极延迟。尽管现有的用于近阈值和亚阈值电路的延迟模型捕获了可变性对门延迟的影响,但它们并未捕获高级延迟现象,例如门输入处的多路输入开关(MIS;也称为近同时转换)。结果,这些选通延迟模型中的大多数通常严重低估了最坏情况的延迟,从而导致非关键路径的选择以及生成与后硅时序相关任务的延迟劣矢量。在本文中,我们提供了广泛的实验结果,以证明MIS对接近和低于阈值的标称门的延迟具有重大影响(大约30–40%)。我们开发了可确保其计算的最小和最大延迟值保证绑定到硅中相应延迟值的模型。我们证明了我们的模型具有实际的运行时复杂性,并且对于超阈值,近阈值和亚阈值电路同样有效。特别是,通过广泛的实验,我们证明了我们的模型永远不会低估延迟,并严格限制实际延迟。我们还说明了这种边界的紧密程度,它们对验证成本的影响以及运行时复杂性之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号