首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >Mean squared error performance of adaptive matched field localization under environmental uncertainty
【24h】

Mean squared error performance of adaptive matched field localization under environmental uncertainty

机译:环境不确定性下自适应匹配场定位的均方误差性能

获取原文
获取原文并翻译 | 示例

摘要

Matched field processing (MFP) is the use of full-field acoustic modeling to obtain improved detection and localization over conventional planewave and range focused beamforming in passive sonar signal processing. MFP localization (MFL), however, is a challenge in practice due to high ambiguities in the search surface that introduce large errors. In addition, uncertainties in environmental characterizations lead to mismatched field replicas that ultimately limit localization performance. Also, the adaptive nature of MFP requires use of estimated data covariances whose impact must be accounted for. The goal of this paper is to use the method of interval errors (MIE) to predict mean-squared error localization performance of MFL at moderate to low SNRs in the presence of mismatch, to assess system performance and sensitivities.
机译:匹配场处理(MFP)是使用全场声学模型来获得对无源声纳信号处理中常规平面波和范围聚焦波束形成的改进检测和定位。然而,由于搜索表面的高度模糊性会引入较大的错误,因此MFP本地化(MFL)在实践中是一个挑战。此外,环境特征的不确定性会导致野外复制品不匹配,最终限制了定位性能。此外,MFP的适应性要求使用估计的数据协方差,必须考虑其影响。本文的目的是使用间隔误差(MIE)方法来预测在存在失配的情况下在中等到低SNR时MFL的均方误差定位性能,以评估系统性能和灵敏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号