首页> 外文会议>2012 IEEE international conference on computational intelligence for measurement systems and applications >An Interconnected Dynamical System composed of dynamics-based Reinforcement Learning agents in a distributed environment: A case study
【24h】

An Interconnected Dynamical System composed of dynamics-based Reinforcement Learning agents in a distributed environment: A case study

机译:分布式环境中由基于动力学的强化学习代理组成的互连动力学系统:一个案例研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a case study of an Interconnected Dynamical System (IDS) composed of Intelligent Reinforcement Learning (RL) agents, and characterized by a Hybrid P2P/Master-Slave architecture. In particular, we propose and extent our previously proposed non-dynamics-based RL work to make it an IDS. Furthermore, we study how the addition of motion constrains, knowledge sharing between agents, and distributed computing affect the overall performance of the system. In addition, we introduce a new dynamics based reward mechanism for reinforcement learning agents.
机译:本文介绍了一个由智能强化学习(RL)代理组成的互连动态系统(IDS)的案例研究,其特征是混合P2P /主从结构。特别是,我们提出并扩展了我们先前提出的基于非动力学的RL工作,使其成为IDS。此外,我们研究了运动约束的添加,代理之间的知识共享以及分布式计算如何影响系统的整体性能。此外,我们为强化学习代理引入了一种新的基于动力学的奖励机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号