【24h】

Knowledge-guided genetic algorithm for financial forecasting

机译:知识指导的遗传算法在财务预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Machine learning algorithms, such as the genetic algorithm, have often been applied to financial problems, but not enough is known about how to systematically incorporate financial knowledge into these generic learning algorithms. The general hypothesis of this paper is that semantic similarity among financial concepts can be exploited in a hybrid genetic algorithm. A Knowledge-guided Genetic Algorithm for Forecasting is introduced to predict the values of financial statement variables. The mutation operation is guided by domain knowledge to make small or large changes in an organism. The algorithm makes a bigger (or smaller) change in the organism when the variables being forecast have higher (or lower) variability. The specific hypothesis is that the use of problem-specific knowledge improves the prediction accuracy. The experimental results show that the use of domain knowledge improves the performance of the algorithm. The knowledge used in this experiment would reasonably be extended in various ways to be used by a refined genetic algorithm.
机译:诸如遗传算法之类的机器学习算法通常已应用于财务问题,但是对于如何系统地将财务知识纳入这些通用学习算法的了解还不够。本文的一般假设是,可以在混合遗传算法中利用金融概念之间的语义相似性。引入了知识指导的遗传预测算法,以预测财务报表变量的值。突变操作以领域知识为指导,以使有机体发生大小变化。当要预测的变量具有较高(或较低)的可变性时,该算法会在生物中产生较大(或较小)的变化。具体的假设是,使用特定于问题的知识可以提高预测的准确性。实验结果表明,领域知识的使用提高了算法的性能。本实验中使用的知识将以各种方式合理扩展,以供完善的遗传算法使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号