首页> 外文会议>2012 4th Workshop on Hyperspectral Image and Signal Processing >A semisupervised feature metric based band selection method for hyperspectral image classification
【24h】

A semisupervised feature metric based band selection method for hyperspectral image classification

机译:基于半监督特征量度的高光谱图像分类波段选择方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel semi-supervised band selection technique for classification of the hyperspectral image. In our proposed method, a simple and efficient metric learning algorithm, i.e. relevant component analysis, is adopted for learning the whitening transformation matrix from which a feature metric is constructed for feature selection. This metric assesses both the class discrimination capability of the single band and the spectral correlation between the any two bands. The affinity propagation technique is then employed as the clustering strategy to select an effective band subset from original spectral bands. Experimental results demonstrate that the proposed method can effectively select the representative bands and reduce the band redundancy for improving the classification accuracy. In addition, the comparison with some literature band selection methods also confirms the superiority of the proposed approach.
机译:本文提出了一种用于高光谱图像分类的新型半监督波段选择技术。在我们提出的方法中,采用一种简单而有效的度量学习算法,即相关分量分析,来学习白化变换矩阵,从中构造出用于选择特征的特征度量。该度量评估单个频带的类别区分能力以及任何两个频带之间的频谱相关性。然后将亲和力传播技术用作聚类策略,以从原始光谱带中选择有效带子集。实验结果表明,该方法可以有效地选择代表频带,减少频带冗余,提高分类精度。此外,与一些文献频带选择方法的比较也证实了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号