首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >A Feature-Metric-Based Affinity Propagation Technique for Feature Selection in Hyperspectral Image Classification
【24h】

A Feature-Metric-Based Affinity Propagation Technique for Feature Selection in Hyperspectral Image Classification

机译:基于特征量度的亲和传播技术在高光谱图像分类中的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Relevant component analysis has shown effective in metric learning. It finds a transformation matrix of the feature space using equivalence constraints. This paper explores this idea for constructing a feature metric (FM) and develops a novel semisupervised feature-selection technique for hyperspectral image classification. Two feature measures referred to as band correlation metric (BCM) and band separability metric (BSM) are derived for the FM. The BCM can measure the spectral correlation among the bands, while the BSM can assess the class discrimination capability of a single band. The proposed feature-metric-based affinity propagation (AP) (FM-AP) technique utilizes exemplar-based clustering, i.e., AP, to group bands from original spectral channels with the FM. Experimental results are conducted on two hyperspectral images and show the advantages of the proposed technique over traditional feature-selection methods.
机译:相关成分分析已显示在度量学习中有效。它使用等价约束找到特征空间的变换矩阵。本文探讨了构建特征量度(FM)的想法,并开发了一种用于高光谱图像分类的新型半监督特征选择技术。为FM导出了两个特征度量,分别称为频带相关度量(BCM)和频带可分离性度量(BSM)。 BCM可以测量频段之间的频谱相关性,而BSM可以评估单个频段的类别区分能力。所提出的基于特征量度的亲和力传播(AP)(FM-AP)技术利用基于示例的聚类即AP来将来自原始频谱信道的频带与FM分组。在两个高光谱图像上进行的实验结果表明了该技术优于传统特征选择方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号