首页> 外文会议>2012 12th UK Workshop on Computational Intelligence. >Meta-Lamarckian learning in three stage optimal memetic exploration
【24h】

Meta-Lamarckian learning in three stage optimal memetic exploration

机译:三阶段最优模因探索中的元Lamarckian学习

获取原文
获取原文并翻译 | 示例

摘要

Three Stage Optimal Memetic Exploration (3SOME) is a single-solution optimization algorithm where the coordinated action of three distinct operators progressively perturb the solution in order to progress towards the problem's optimum. In the fashion of Memetic Computing, 3SOME is designed as an organized structure where the three operators interact by means of a success/failure logic. This simple sequential structure is an initial example of Memetic Computing approach generated by means of a bottom-up logic. This paper compares the 3SOME structure with a popular adaptive technique for Memetic Algorithms, namely Meta-Lamarckian learning. The resulting algorithm, Meta-Lamarckian Three Stage Optimal Memetic Exploration (ML3SOME) is thus composed of the same three 3SOME operators but makes use a different coordination logic. Numerical results show that the adaptive technique is overall efficient also in this Memetic Computing context. However, while ML3SOME appears to be clearly better than 3SOME for low dimensionality values, its performance appears to suffer from the curse of dimensionality more than that of the original 3SOME structure.
机译:三阶段最佳模因探索(3SOME)是一种单解决方案优化算法,其中三个不同的算子的协调动作会逐渐扰动该解决方案,以便朝问题的最优方向发展。以Memetic计算的方式,3SOME被设计为一个组织的结构,其中三个操作员通过成功/失败逻辑进行交互。这种简单的顺序结构是通过自下而上的逻辑生成的Memetic计算方法的初始示例。本文将3SOME结构与流行的Memetic算法自适应技术(即Meta-Lamarckian学习)进行了比较。由此产生的算法,Meta-Lamarckian三阶段最优模因探索(ML3SOME)由相同的三个3SOME运算符组成,但使用了不同的协调逻辑。数值结果表明,在Memetic计算环境中,自适应技术总体上也是有效的。但是,虽然ML3SOME在低维值上似乎明显优于3SOME,但它的性能似乎比原始3SOME结构受维数诅咒的影响更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号