首页> 外文期刊>Computational Intelligence >Balancing exploration and exploitation in memetic algorithms: A learning automata approach
【24h】

Balancing exploration and exploitation in memetic algorithms: A learning automata approach

机译:平衡模因算法中的探索和开发:一种学习自动机方法

获取原文
获取原文并翻译 | 示例

摘要

One of the problems with traditional genetic algorithms (GAs) is premature convergence, which makes them incapable of finding good solutions to the problem. The memetic algorithm (MA) is an extension of the GA. It uses a local search method to either accelerate the discovery of good solutions, for which evolution alone would take too long to discover, or reach solutions that would otherwise be unreachable by evolution or a local search method alone. In this paper, we introduce a new algorithm based on learning automata (LAs) and an MA, and we refer to it as LA-MA. This algorithm is composed of 2 parts: a genetic section and a memetic section. Evolution is performed in the genetic section, and local search is performed in the memetic section. The basic idea of LA-MA is to use LAs during the process of searching for solutions in order to create a balance between exploration performed by evolution and exploitation performed by local search. For this purpose, we present a criterion for the estimation of success of the local search at each generation. This criterion is used to calculate the probability of applying the local search to each chromosome. We show that in practice, the proposed probabilistic measure can be estimated reliably. On the basis of the relationship between the genetic section and the memetic section, 3 versions of LA-MA are introduced. LLA-MA behaves according to the Lamarckian learning model, BLA-MA behaves according to the Baldwinian learning model, and HLA-MA behaves according to both the Baldwinian and Lamarckian learning models. To evaluate the efficiency of these algorithms, they have been used to solve the graph isomorphism problem. The results of computer experimentations have shown that all the proposed algorithms outperform the existing algorithms in terms of quality of solution and rate of convergence.
机译:传统遗传算法(GA)的问题之一是过早收敛,这使它们无法找到问题的良好解决方案。模因算法(MA)是GA的扩展。它使用本地搜索方法来加速好的解决方案的发现,而仅靠进化将需要很长的时间才能找到好的解决方案,或者使用进化或仅通过本地搜索方法就无法找到解决方案。在本文中,我们介绍了一种基于学习自动机(LA)和MA的新算法,并将其称为LA-MA。该算法由两部分组成:遗传部分和模因部分。在遗传部分进行进化,而在模因部分进行局部搜索。 LA-MA的基本思想是在搜索解决方案的过程中使用LA,以便在通过演化进行的探索与通过本地搜索进行的利用之间建立平衡。为此,我们提出了一个标准,用于估算每一代本地搜索的成功率。该标准用于计算对每个染色体进行局部搜索的概率。我们表明,在实践中,所提出的概率测度可以可靠地估计。根据遗传部分和模因部分之间的关​​系,介绍了3种形式的LA-MA。 LLA-MA遵循Lamarckian学习模型,BLA-MA遵循Baldwinian学习模型,HLA-MA遵循Baldwinian和Lamarckian学习模型。为了评估这些算法的效率,已将它们用于解决图同构问题。计算机实验结果表明,所有提出的算法在求解质量和收敛速度方面都优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号