首页> 外文会议>16th workshop on biomedical natural language processing >Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs
【24h】

Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs

机译:用于生物医学信息检索的深度学习:从点击日志中学习文本相关性

获取原文
获取原文并翻译 | 示例

摘要

We describe a Deep Learning approach to modeling the relevance of a document's text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document's relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search.
机译:我们描述了一种深度学习方法,用于对文档文本与查询的相关性进行建模,并将其应用于生物医学文献。代替将每个文档和查询映射到公共语义空间,我们计算查询和文档之间的可变长度差异向量,然后将其传递到深度卷积阶段,再经过深度回归网络以产生与文档相关性的估计概率查询。尽管训练数据量很少,但是与计算查询和文档的语义向量表示之间的相似性相比,此方法产生的预测器要更健壮,并且相对于传统的IR文本因素也有明显的改进。将来,我们计划探索其在改进PubMed搜索中的应用。

著录项

  • 来源
  • 会议地点 Vancouver(CA)
  • 作者单位

    National Center for Biotechnology Information Bethesda, MD 20894, USA;

    National Center for Biotechnology Information Bethesda, MD 20894, USA;

    National Center for Biotechnology Information Bethesda, MD 20894, USA;

    National Center for Biotechnology Information Bethesda, MD 20894, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号