【24h】

Dynamic Detection of Academic Team Communities Based on Temporal Coauthor Network

机译:基于时间共同作者网络的学术团队社区动态检测

获取原文
获取原文并翻译 | 示例

摘要

As the status of team members and relationships between them change over time, the importance of membership nodes in the academic team also change, so that the academic team organizational structure evolves. The changes caused by the core members of the team led to the evolution of the team structure. Therefore, this paper presents a dynamic community discovery algorithm based on temporal coauthor network. By detecting the importance of nodes, the strength of relative edges, and its variation of persistence with time, the proposed algorithm implements creation, extension, shrink, division and disappearance operations on the communities in order to achieve the purpose of dynamic community discovery. In addition, for assessing the quality of community division, the paper proposes a method based on the interest similarity of Chinese key characters feature of academic teams. In experiment, a public document record dataset annodes in the academic team also change, so that the academic team organizational structure evolves. The changes caused by the core members of the team led to the evolution of the team structure. Therefore, this paper presents a dynamic community discovery algorithm based on temporal coauthor network. By detecting the importance of nodes, the strength of relative edges, and its variation of persistence with time, the proposed algorithm implements creation, extension, shrink, division and disappearance operations on the communities in order to achieve the purpose of dynamic community discovery. In addition, for assessing the quality of community division, the paper proposes a method based on the interest similarity of Chinese key characters feature of academic teams. In experiment, a public document record dataset and several syntheticd several synthetic dataset are used to verify the effectiveness our algorithm.
机译:随着团队成员的状态及其之间的关系随时间而变化,成员节点在学术团队中的重要性也随之改变,从而使学术团队的组织结构不断发展。团队核心成员引起的变化导致团队结构的演变。因此,本文提出了一种基于时间共同作者网络的动态社区发现算法。通过检测节点的重要性,相对边缘的强度及其持久性随时间的变化,该算法实现了对社区的创建,扩展,收缩,划分和消失操作,从而达到了动态社区发现的目的。另外,为了评估社区划分的质量,本文提出了一种基于学术团队汉字关键特征兴趣相似度的方法。在实验中,学术团队中公共文档记录数据集的阳极也发生了变化,因此学术团队的组织结构也在不断发展。团队核心成员引起的变化导致团队结构的演变。因此,本文提出了一种基于时间共同作者网络的动态社区发现算法。通过检测节点的重要性,相对边缘的强度及其持久性随时间的变化,该算法实现了对社区的创建,扩展,收缩,划分和消失操作,从而达到了动态社区发现的目的。另外,为了评估社区划分的质量,本文提出了一种基于学术团队汉字关键特征兴趣相似度的方法。在实验中,使用公共文档记录数据集和几个合成的几个合成数据集来验证我们算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号