首页> 外文期刊>Knowledge-Based Systems >Autonomous overlapping community detection in temporal networks: A dynamic Bayesian nonnegative matrix factorization approach
【24h】

Autonomous overlapping community detection in temporal networks: A dynamic Bayesian nonnegative matrix factorization approach

机译:时域网络中的自治重叠社区检测:动态贝叶斯非负矩阵分解方法

获取原文
获取原文并翻译 | 示例

摘要

A wide variety of natural or artificial systems can be modeled as time-varying or temporal networks. To understand the structural and functional properties of these time-varying networked systems, it is desirable to detect and analyze the evolving community structure. In temporal networks, the identified communities should reflect the current snapshot network, and at the same time be similar to the communities identified in history or say the previous snapshot networks. Most of the existing approaches assume that the number of communities is known or can be obtained by some heuristic methods. This is unsuitable and complicated for most real world networks, especially temporal networks. In this paper, we propose a Bayesian probabilistic model, named Dynamic Bayesian Nonnegative Matrix Factorization (DBNMF), for automatic detection of overlapping communities in temporal networks. Our model can not only give the overlapping community structure based on the probabilistic memberships of nodes in each snapshot network but also automatically determines the number of communities in each snapshot network based on automatic relevance determination. Thereafter, a gradient descent algorithm is proposed to optimize the objective function of our DBNMF model. The experimental results using both synthetic datasets and real-world temporal networks demonstrate that the DBNMF model has superior performance compared with two widely used methods, especially when the number of communities is unknown and when the network is highly sparse. (C) 2016 Elsevier B.V. All rights reserved.
机译:各种自然或人工系统都可以建模为时变或时态网络。为了了解这些时变网络系统的结构和功能特性,需要检测和分析不断发展的社区结构。在临时网络中,所标识的社区应反映当前的快照网络,同时与历史记录中所标识的社区(或说以前的快照网络)相似。现有的大多数方法都假定社区的数目是已知的,或者可以通过一些启发式方法获得。对于大多数现实世界网络,尤其是临时网络,这是不合适且复杂的。在本文中,我们提出了一个贝叶斯概率模型,称为动态贝叶斯非负矩阵分解(DBNMF),用于自动检测时间网络中的重叠社区。我们的模型不仅可以基于每个快照网络中节点的概率成员资格来给出重叠的社区结构,而且可以基于自动相关性确定来自动确定每个快照网络中的社区数量。此后,提出了一种梯度下降算法来优化我们的DBNMF模型的目标函数。使用合成数据集和现实世界时态网络的实验结果表明,与两种广泛使用的方法相比,DBNMF模型具有更好的性能,尤其是在社区数量未知且网络高度稀疏的情况下。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号