【24h】

Evolving Modular Neural Networks Using Rule-Based Genetic Programming

机译:使用基于规则的遗传规划的模块化神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a new approach for evolving recurrent neural networks using Genetic Programming. A system has been developed to train weightless neural networks using construction rules. The network construction rules are evolved by the Genetic Programming system which build the solution neural networks. The use of rules allows networks to be constructed modularly. Experimentation with decomposable Boolean functions has revealed that the performance of the system is superior to a non-modular version of the system.
机译:本文介绍了一种使用遗传编程演化循环神经网络的新方法。已经开发出一种使用构造规则来训练失重神经网络的系统。网络构建规则是由构建编程神经网络的遗传编程系统演化而来的。规则的使用允许对网络进行模块化构建。可分解布尔函数的实验表明,该系统的性能优于该系统的非模块化版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号