首页> 外国专利> ANOMALY DETECTION SYSTEM USING MULTI-LAYER SUPPORT VECTOR MACHINES AND METHOD THEREOF

ANOMALY DETECTION SYSTEM USING MULTI-LAYER SUPPORT VECTOR MACHINES AND METHOD THEREOF

机译:一种基于多层支持向量机的异常检测系统及其方法

摘要

A classifier network has at least two distinct sets of refined data, wherein the first two sets of refined data are sets of numbers representing the features values data received from sensors or a manufactured part. Performing, via at least two distinct types of support vector machines using an associated feature selection process for each classifier independently in a first layer, anomaly detection on the manufactured part. Then, using the stored data including refined data of at least two different types of data transforms and performing, via at least a two distinct types of support vector machines in a second layer, an associated feature selection process for each classifier independently. Forming at least four distinct compound classifier types for anomaly detection on the part using the stored data or coefficients. The ensemble of second layer support vector machine outputs compare the results to determine the presence of an anomaly.
机译:分类器网络至少具有两组不同的精细化数据集,其中前两组精细化数据是表示从传感器或制造零件接收的特征值数据的数字集。通过至少两种不同类型的支持向量机,在第一层中独立地对每个分类器使用相关的特征选择过程,对制造的零件进行异常检测。然后,使用存储的数据,包括至少两种不同类型的数据的精炼数据进行转换,并通过第二层中的至少两种不同类型的支持向量机,独立地为每个分类器执行相关的特征选择过程。形成至少四种不同的复合分类器类型,以便使用存储的数据或系数对零件进行异常检测。第二层支持向量机输出的集合比较结果以确定是否存在异常。

著录项

  • 公开/公告号US20230085711A1;US2023000085711A1;US2023085711A1;US2023085711

    专利类型

  • 公开/公告日2023-03-23

    原文格式PDF

  • 申请/专利号US17986982;US202200017986982;US202217986982A;US202217986982

  • 发明设计人

    申请日2022-11-15

  • 分类号G06K9/62;G06N20/20;G06N20/10;

  • 国家

  • 入库时间 2024-06-14 23:53:39

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号