首页> 外国专利> FEDERATED LEARNING METHOD FOR k-means CLUSTERING ALGORITHM

FEDERATED LEARNING METHOD FOR k-means CLUSTERING ALGORITHM

机译:一种基于k-means聚类算法的联邦学习方法

摘要

Disclosed is a federated learning method for a k-means clustering algorithm. Horizontal federated learning includes the following steps: 1) initializing K clusters, and distributing, a local sample to a cluster closest to the sample; 2) calculating a new cluster center of the cluster; and 3) if the cluster center changes, then returning to step 1). Vertical federated learning includes the following steps: 1) running, the k-means clustering algorithm locally to obtain T local clusters and intersecting to obtain TL new clusters, or running an AP clustering algorithm to obtain Ti clusters and intersecting to obtain Πi=1LTi new clusters; 2) taking TL (Πi=1LTi) new cluster centers as input samples, and initializing the K clusters; 3) distributing each sample to the cluster closest to the sample; 4) calculating a new cluster center of the cluster; and 5) if the cluster center changes, then returning to step 3).
机译:Disclosed 是 k 均值聚类算法的联合学习方法。水平联邦学习包括以下步骤:1)初始化K个聚类,并将局部样本分发到最接近该样本的聚类;2)计算簇的新簇中心;3)如果集群中心发生变化,则返回步骤1)。垂直联邦学习包括以下步骤:1)运行,k-means聚类算法局部得到T局部簇,并相交得到TL新簇,或运行AP聚类算法得到Ti簇,相交得到Πi=1LTi新簇;2)取TL(Πi=1LTi)新聚类中心作为输入样本,初始化K个聚类;3)将每个样品分布到离样品最近的簇中;4)计算簇的新簇中心;5)如果聚类中心发生变化,则返回步骤3)。

著录项

  • 公开/公告号US20220358417A1;US2022000358417A1;US2022358417A1;US2022358417

    专利类型

  • 公开/公告日2022-11-10

    原文格式PDF

  • 申请/专利权人 ZHEJIANG UNIVERSITY;

    申请/专利号US17860128;US202200017860128;US202217860128A;US202217860128

  • 发明设计人

    申请日2022-07-08

  • 分类号G06N20/20;G06K9/62;

  • 国家

  • 入库时间 2024-06-14 23:43:23

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号