首页> 外国专利> NEURAL NETWORKS FOR HANDLING VARIABLE-DIMENSIONAL TIME SERIES DATA

NEURAL NETWORKS FOR HANDLING VARIABLE-DIMENSIONAL TIME SERIES DATA

机译:用于处理可变维度时间序列数据的神经网络

摘要

Several applications capture data from sensors resulting in multi-sensor time series. Existing neural networks-based approaches for such multi-sensor/multivariate time series modeling assume fixed input-dimension/number of sensors. Such approaches can struggle in practical setting where different instances of same device/equipment come with different combinations of installed sensors. In the present disclosure, neural network models are trained from such multi-sensor time series having varying input dimensionality, owing to availability/installation of different sensors subset at each source of time series. Neural network (NN) architecture is provided for zero-shot transfer learning allowing robust inference for multivariate time series with previously unseen combination of available dimensions/sensors at test time. Such combinatorial generalization is achieved by conditioning layers of core NN-based time series model with “conditioning vector” carrying information of available sensors combination for each time series and is obtained by summarizing learned “sensor embedding vectors set” corresponding to available sensors in time series.
机译:几个应用程序从传感器捕获数据导致多传感器时间序列。用于这种多传感器/多变量时间序列建模的现有的基于神经网络的方法采用固定输入维/数量的传感器。这种方法可以在实际设置中挣扎,其中相同设备/设备的不同实例具有不同的安装传感器的组合。在本公开中,由于在每个时间源序列下的不同传感器子集的可用性/安装,从具有不同输入维度的这种多传感器时间序列训练了神经网络模型。提供了神经网络(NN)架构,用于零拍摄传输学习,允许多变量时间序列的鲁棒推理,其中具有先前看不见的可用尺寸/传感器在测试时间。这种组合概括是通过对每个时间序列的可用传感器组合的“调节向量”携带信息的核心NN的时间序列模型层来实现,并且通过总结与时间序列中的可用传感器对应的学习“传感器嵌入向量集”而获得。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号