首页> 外文OA文献 >Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach
【2h】

Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach

机译:在类似系列组上使用经常性神经网络预测时间序列数据库:聚类方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the advent of Big Data, nowadays in many applications databasescontaining large quantities of similar time series are available. Forecastingtime series in these domains with traditional univariate forecasting proceduresleaves great potentials for producing accurate forecasts untapped. Recurrentneural networks, and in particular Long Short-Term Memory (LSTM) networks haveproven recently that they are able to outperform state-of-the-art univariatetime series forecasting methods in this context, when trained across allavailable time series. However, if the time series database is heterogeneousaccuracy may degenerate, so that on the way towards fully automatic forecastingmethods in this space, a notion of similarity between the time series needs tobe built into the methods. To this end, we present a prediction model usingLSTMs on subgroups of similar time series, which are identified by time seriesclustering techniques. The proposed methodology is able to consistentlyoutperform the baseline LSTM model, and it achieves competitive results onbenchmarking datasets, in particular outperforming all other methods on theCIF2016 dataset.
机译:随着大数据的出现,如今在许多应用databasescontaining大量类似的时间序列是可用的。 Forecastingtime系列在这些领域与传统的单变量预测proceduresleaves潜力巨大生产准确的预测尚未开发。 Recurrentneural网络,特别是长短期记忆(LSTM)网络最近haveproven,他们能够在这方面强于大盘国家的最先进的univariatetime序列预测方法,跨allavailable时间序列训练的时候。但是,如果时间序列数据库heterogeneousaccuracy可能变质,以便在对在这个空间全自动forecastingmethods的方式,时间序列需求之间的相似性的概念砥内置方法。为此,我们提出对类似的时间序列,其通过时间seriesclustering技术鉴定亚类的预测模型usingLSTMs。所提出的方法能够consistentlyoutperform基线LSTM模型,它实现了onbenchmarking数据集有竞争力的结果,尤其是跑赢上theCIF2016数据集中的所有其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号