首页> 外文期刊>Expert Systems with Application >Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach
【24h】

Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach

机译:使用递归神经网络对相似序列的组进行跨时间序列数据库的预测:一种聚类方法

获取原文
获取原文并翻译 | 示例

摘要

With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks (RNNs), and in particular Long Short Term Memory (LSTM) networks, have proven recently that they are able to outperform state-of-the-art univariate time series forecasting methods in this context, when trained across all available time series. However, if the time series database is heterogeneous, accuracy may degenerate, so that on the way towards fully automatic forecasting methods in this space, a notion of similarity between the time series needs to be built into the methods. To this end, we present a prediction model that can be used with different types of RNN models on subgroups of similar time series, which are identified by time series clustering techniques. We assess our proposed methodology using LSTM networks, a widely popular RNN variant, together with various clustering algorithms, such as kMeans, DBScan, Partition Around Medoids (PAM), and Snob. Our method achieves competitive results on benchmarking datasets under competition evaluation procedures. In particular, in terms of mean sMAPE accuracy it consistently outperforms the baseline LSTM model, and outperforms all other methods on the CIF2016 forecasting competition dataset. (C) 2019 Elsevier Ltd. All rights reserved.
机译:随着大数据的到来,如今在许多应用程序中都可以使用包含大量相似时间序列的数据库。使用传统的单变量预测程序在这些域中预测时间序列为产生尚未开发的准确预测留有巨大潜力。最近证明,递归神经网络(RNN),尤其是长期短期记忆(LSTM)网络,在所有可用时间进行训练时,在这种情况下可以胜任最新的单变量时间序列预测方法系列。但是,如果时间序列数据库是异构的,则准确性可能会下降,因此,在朝着该空间中的全自动预测方法的方向上,方法中必须建立时间序列之间的相似性概念。为此,我们提出了一种预测模型,该模型可与相似时间序列的子组上的不同类型的RNN模型一起使用,这些时间序列聚类技术可以识别这些预测模型。我们使用LSTM网络(一种广泛使用的RNN变体)以及各种聚类算法(例如kMeans,DBScan,Medoids周围的分区(PAM)和Snob)来评估我们提出的方法。我们的方法通过竞争评估程序在基准数据集上获得竞争结果。特别是,就平均sMAPE准确性而言,它始终优于基准LSTM模型,并优于CIF2016预测竞争数据集上的所有其他方法。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号