首页> 外国专利> Scene classification prediction

Scene classification prediction

机译:场景分类预测

摘要

Systems and techniques for scene classification and prediction is provided herein. A first series of image frames of an environment from a moving vehicle may be captured. Traffic participants within the environment may be identified and masked based on a first convolutional neural network (CNN). Temporal classification may be performed to generate a series of image frames associated with temporal predictions based on a scene classification model based on CNNs and a long short-term memory (LSTM) network. Additionally, scene classification may occur based on global average pooling. Feature vectors may be generated based on different series of image frames and a fusion feature vector may be obtained by performing data fusion based on a first feature vector, a second feature vector, a third feature vector, etc. In this way, a behavior predictor may generate a predicted driver behavior based on the fusion feature.
机译:本文提供了场景分类和预测的系统和技术。可以捕获来自移动车辆的环境的第一系列图像框架。可以基于第一卷积神经网络(CNN)来识别和掩盖环境内的交通参与者。可以执行时间分类以基于基于CNN和长短期存储器(LSTM)网络的场景分类模型生成与时间预测相关联的一系列图像帧。另外,可以基于全局平均池来发生场景分类。可以基于不同系列图像帧生成特征向量,并且可以通过以这种方式基于第一特征向量,第二特征向量,第三特征向量等执行数据融合来获得融合特征向量。以这种方式,行为预测器可以基于融合功能生成预测的驱动程序行为。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号