首页> 外国专利> High dimensional data mining and visualization via gaussianization

High dimensional data mining and visualization via gaussianization

机译:通过高斯化进行高维数据挖掘和可视化

摘要

A method is provided for providing high dimensional data. The high dimensional data is linearly transformed into less dependent coordinates, by applying a linear transform of n rows by n columns to the high dimensional data. Each of the coordinates are marginally Gaussianized, the Gaussianization being characterized by univariate Gaussian means, priors, and variances. The transforming and Gaussianizing steps are iteratively repeated until the coordinates converge to a standard Gaussian distribution. The coordinates of all iterations are arranged hierarchically to facilitate data mining. The arranged coordinates are then mined. According to an embodiment of the invention, the transform step includes applying an iterative maximum likelihood expectation maximization (EM) method to the high dimensional data.
机译:提供了一种用于提供高维数据的方法。通过将n行x n列的线性变换应用于高维数据,可将高维数据线性变换为依赖性较小的坐标。每个坐标都是边际高斯化的,高斯化的特征在于单变量高斯均值,先验和方差。反复重复执行变换和高斯化步骤,直到坐标收敛到标准高斯分布为止。所有迭代的坐标按层次排列,以方便数据挖掘。然后挖掘安排的坐标。根据本发明的实施例,变换步骤包括将迭代最大似然期望最大化(EM)方法应用于高维数据。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号