首页> 外国专利> Method for optimizing a recognition dictionary, so that similar pattern can be distinguished better

Method for optimizing a recognition dictionary, so that similar pattern can be distinguished better

机译:优化识别字典的方法,以便可以更好地区分相似的模式

摘要

A discriminant function is defined by conventional learning discriminant analysis (22) and a value of the discriminant function is calculated (23) for all the training patterns in the in-category pattern set of each category and for all the training patterns in the rival pattern set of the category. The in-category pattern set is composed of all the training patterns defined as belonging to the category. The rival pattern set is composed of the training patterns that belong to other categories and that are incorrectly recognized as belonging to the category. An in-category pattern subset and a rival pattern subset are then formed (24) for each category. The in-category pattern subset for the category is formed by selecting a predetermined number of the training patterns that belong to the in-category pattern set and that, among the training patterns that belong to the in-category pattern set, have the largest values of the discriminant function. The rival pattern subset for the category is formed by selecting a predetermined number of the training patterns that belong to the rival pattern set of the category and that, among the training patterns that belong to the rival pattern set, have the smallest values of the discriminant function. A linear discriminant analysis operation is then performed (25) on the in-category pattern subset and the rival pattern subset to obtain parameters defining a new discriminant function. The reference vector and weighting vector stored in the recognition dictionary for the category are then modified using the parameters defining the new discriminant function.
机译:通过常规学习判别分析(22)定义判别函数,并针对每个类别的类别内模式集中的所有训练模式以及竞争者模式中的所有训练模式计算判别函数的值(23)类别集。类别内模式集由定义为属于该类别的所有训练模式组成。竞争者模式集由属于其他类别的训练模式组成,这些训练模式被错误地识别为属于该类别。然后为每个类别形成类别内模式子集和竞争者模式子集(24)。通过选择预定数量的属于类别内模式集并且在属于类别内模式集的训练模式中具有最大值的训练模式来形成用于类别的类别内模式子集。判别函数通过选择预定数量的,属于该类别的竞争者模式集的训练模式来形成用于该类别的竞争者模式子集,并且该训练模式在属于竞争者模式集的训练模式中具有最小的判别值功能。然后,对类别内模式子集和竞争者模式子集执行线性判别分析操作(25),以获得定义新判别函数的参数。然后使用定义新判别函数的参数修改存储在类别的识别字典中的参考向量和加权向量。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号