首页> 外国专利> LEARNING RIGIDITY OF DYNAMIC SCENES FOR THREE-DIMENSIONAL SCENE FLOW ESTIMATION

LEARNING RIGIDITY OF DYNAMIC SCENES FOR THREE-DIMENSIONAL SCENE FLOW ESTIMATION

机译:三维场景流估计的动态场景学习刚性

摘要

A neural network model receives color data for a sequence of images corresponding to a dynamic scene in three-dimensional (3D) space. Motion of objects in the image sequence results from a combination of a dynamic camera orientation and motion or a change in the shape of an object in the 3D space. The neural network model generates two components that are used to produce a 3D motion field representing the dynamic (non-rigid) part of the scene. The two components are information identifying dynamic and static portions of each image and the camera orientation. The dynamic portions of each image contain motion in the 3D space that is independent of the camera orientation. In other words, the motion in the 3D space (estimated 3D scene flow data) is separated from the motion of the camera.
机译:神经网络模型接收对应于三维(3D)空间中动态场景的图像序列的颜色数据。图像序列中对象的运动是由动态相机方向和运动或3D空间中对象形状的变化共同导致的。神经网络模型生成两个组件,用于生成代表场景动态(非刚性)部分的3D运动场。这两个组成部分是标识每个图像的动态和静态部分以及相机方向的信息。每个图像的动态部分包含3D空间中与摄影机方向无关的运动。换句话说,3D空间中的运动(估计的3D场景流数据)与相机的运动分开。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号