首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Scene Particles: Unregularized Particle-Based Scene Flow Estimation
【24h】

Scene Particles: Unregularized Particle-Based Scene Flow Estimation

机译:场景粒子:基于粒子的不规则场景流量估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an algorithm is presented for estimating scene flow, which is a richer, 3D analog of optical flow. The approach operates orders of magnitude faster than alternative techniques and is well suited to further performance gains through parallelized implementation. The algorithm employs multiple hypotheses to deal with motion ambiguities, rather than the traditional smoothness constraints, removing oversmoothing errors and providing significant performance improvements on benchmark data, over the previous state of the art. The approach is flexible and capable of operating with any combination of appearance and/or depth sensors, in any setup, simultaneously estimating the structure and motion if necessary. Additionally, the algorithm propagates information over time to resolve ambiguities, rather than performing an isolated estimation at each frame, as in contemporary approaches. Approaches to smoothing the motion field without sacrificing the benefits of multiple hypotheses are explored, and a probabilistic approach to occlusion estimation is demonstrated, leading to 10 and 15 percent improved performance, respectively. Finally, a data-driven tracking approach is described, and used to estimate the 3D trajectories of hands during sign language, without the need to model complex appearance variations at each viewpoint.
机译:在本文中,提出了一种估算场景流量的算法,该算法是光流量的更丰富的3D模拟。该方法比替代技术的运行速度快几个数量级,非常适合通过并行实现进一步提高性能。该算法采用多个假设来处理运动歧义,而不是传统的平滑度约束,从而消除了过平滑的错误,并提供了优于现有技术的基准数据显着性能改进。该方法是灵活的,并且能够在任何设置中与外观和/或深度传感器的任何组合一起操作,并在必要时同时估计结构和运动。另外,该算法会随着时间传播信息以解决歧义,而不是像现代方法那样在每个帧上执行隔离的估计。探索了在不牺牲多个假设优势的情况下平滑运动场的方法,并展示了一种用于遮挡估计的概率方法,分别使性能提高了10%和15%。最后,描述了一种数据驱动的跟踪方法,该方法用于估计手语期间手的3D轨迹,而无需在每个视点上建模复杂的外观变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号