首页> 外国专利> COMPUTING SYSTEM AND METHOD FOR DETERMINING MIMICKED GENERALIZATION THROUGH TOPOLOGIC ANALYSIS FOR ADVANCED MACHINE LEARNING

COMPUTING SYSTEM AND METHOD FOR DETERMINING MIMICKED GENERALIZATION THROUGH TOPOLOGIC ANALYSIS FOR ADVANCED MACHINE LEARNING

机译:通过拓扑分析确定高级广义机器学习的广义广义的计算系统和方法

摘要

Advancing beyond Interpretability and explainability approaches that may uncover what a Deep Neural Network (DNN) models, i.e., what each node (cell) in the network represents and what images are most likely to activate the model provide a mimicked type of learning of generalization applicable to previously unseen samples. The approach provides an ability to detect and circumvent adversarial attacks, with self-verification and trust-building structural modeling. Computing systems may now define what it means to learn in deep networks, and how to use this knowledge for a multitude of practical applications.
机译:超越可解释性和可解释性方法的发展,这些方法可能会揭示什么是深度神经网络(DNN)模型,即网络中每个节点(单元)代表什么以及最有可能激活该模型的图像提供了一个模拟化的泛化学习类型,适用于以前看不见的样本。该方法具有自我验证和建立信任的结构模型,可以检测和规避对抗性攻击。计算系统现在可以定义在深度网络中学习意味着什么,以及如何将这些知识用于大量实际应用。

著录项

  • 公开/公告号WO2020210351A1

    专利类型

  • 公开/公告日2020-10-15

    原文格式PDF

  • 申请/专利权人 MARTINEZ ALEIX;OHIO STATE INNOVATION FOUNDATION;

    申请/专利号WO2020US27259

  • 发明设计人 MARTINEZ ALEIX;

    申请日2020-04-08

  • 分类号G06F21/56;G06N3/04;G06N3/08;H04L29/06;

  • 国家 WO

  • 入库时间 2022-08-21 11:08:56

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号