首页> 中国专利> 一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法

一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法

摘要

本发明公开一种基于日相似聚类与Kmeans‑GRA‑LSTM的光伏电站短期功率预测方法,首先获取某光伏电站的功率数据和所在地的多元气象因子数据并对数据进行预处理。后提取功率特征值并使用K‑means聚类算法进行聚类。根据功率特征值聚类结果对应多元气象因子,将数据归一化处理并提取多元气象因子特征向量。选取预测日的多元气象因子特征向量,选取与预测日关联度较高的功率和多元气象因子数据作为相似日样本,选用算术优化算法对LSTM的参数进行优化,构建LSTM网络拓扑结构。根据构建完成的LSTM,预测某光伏电站的并网点功率。本发明为解决短期光伏功率预测提供了一种方案和思路。

著录项

  • 公开/公告号CN114897129A

    专利类型发明专利

  • 公开/公告日2022-08-12

    原文格式PDF

  • 申请/专利权人 华北电力大学;

    申请/专利号CN202210292305.9

  • 发明设计人 黄从智;张昕慧;

    申请日2022-03-24

  • 分类号G06N3/04(2006.01);G06N3/08(2006.01);G06K9/62(2022.01);H02J3/38(2006.01);H02J3/00(2006.01);

  • 代理机构

  • 代理人

  • 地址 102206 北京市昌平区北农路2号

  • 入库时间 2023-06-19 16:20:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-05-23

    实质审查的生效 IPC(主分类):G06N 3/04 专利申请号:2022102923059 申请日:20220324

    实质审查的生效

说明书

技术领域

本发明涉及光伏发电与并网技术领域的短期光伏功率预测技术领域,具体来讲涉及一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法。

背景技术

世界能源以及环境形势的日益紧张带来了电力供需矛盾突出等问题,因而传统能源的开发利用受到更多的局限,而在新能源中,太阳能被认为是一种理想的可再生能源发电来源。光伏发电是一种重要的太阳能利用方式,但光伏电站的输出有着高度的随机性、波动性和间歇性等特点,大规模光伏发电的接入会对电力系统的安全、稳定运行以及电能质量的保证带来严峻挑战。因此对光伏电站的输出功率进行预测,对于电力部门及时调整调度计划,提高电力系统运行的可靠性和光伏电站的接入水平,减小系统的旋转备用容量具有重要意义。

在光伏功率预测领域内,根据预测跨越的物理时间层面可按照超短期、短期和长期以及更长时间进行划分,针对本专利来讲,主要提出一种短期光伏功率预测方法即预测未来三天的光伏功率。短期光伏功率预测算法的研究,其主要是从预测所跨越的物理时间入手,以物理时间为基本度量标准,完成预测模型的基本构建,当前短期功率预测常使用神经网络算法、分类回归算法、时间序列算法以及概率预测算法和综合预测算法。

发明内容

本发明的目的是提供一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法,更为精确预测光伏发电功率,降低光伏并网对电网可能造成的损害。根据某光伏电站的并网点功率数据和某光伏电站所在地的多元气象因子数据,对获取的并网点功率数据和多元气象因子数据进行预处理,对获取的某光伏电站的并网点功率提取特征值,并使用K-means聚类算法进行聚类,根据并网点功率特征值聚类结果对应多元气象因子,将数据归一化处理并提取多元气象因子的特征向量,选取预测日的多元气象因子特征向量,使用灰色关联度法选取与预测日关联度最高的前10天的并网点功率数据和多元气象因子数据作为相似日样本,作为LSTM神经网络的训练集,选用算术优化算法对LSTM的参数进行优化,构建LSTM网络拓扑结构。根据构建完成的LSTM,预测某光伏电站的并网点功率,验证其方法的准确性。

本发明所采用的技术是,一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法,具体按照以下步骤实施:

获取某光伏电站的并网功率数据和某光伏电站所在地的多元气象因子数据。

其中多元气象因子数据中包括温度,湿度,大气压力,风速,风向和辐射度等气象因子。

对获取的并网点功率数据和多元气象因子数据进行预处理。

预处理的数据通常为缺失数据和异常数据。

对于异常数据和缺失数据均使用均值插补法进行补全,均值插补法如下:

其中x'

对获取的某光伏电站的并网点功率数据提取特征值。

选取特征值分别为日功率平均值,日标准差,日功率变异系数,日功率偏态,日功率峰态和日总功率。具体公式如下:

日平均功率:

其中N表示数据点的数目,数据点个数与每天的辐射度时长有关。P

日标准差:

日功率变异系数:

日功率偏态:

日功率峰态:

日总功率:

提取出每日特征值后组成功率特征向量,进行归一化处理。归一化公式如下:

其中x

选用K-means聚类算法对归一化后的功率特征向量进行聚类。

K-means聚类算法具体流程:

从样本集中随机选取K个样本作为簇中心。

计算所有样本与这K个簇中心的距离,对于每一个样本,将其划分到与其距离最近的簇中心所在的簇中,对于新的簇计算各个簇的新的簇中心。

重复上述步骤,直至簇中心不在移动。

由于使用K-means对功率特征向量聚类,聚类中心数目不确定,因此引入聚类评估算法轮廓系数,轮廓系数公式如下:

其中,计算样本i到同簇其他样本的平均距离a(i),a(i)越小,说明样本i越应该被聚类到该簇,将a(i)称为样本i的簇内不相似度。计算样本i到某簇C

根据并网点功率特征向量聚类结果对应多元气象因子特征向量。

确定多元气象因子的特征向量包含风速、大气压、温度、湿度、风向、辐射度的最大值和最小值以及辐射时长。

并网点功率特征向量聚类结果与多元气象因子特征向量对应。

选取预测日的多元气象因子特征向量,使用灰色关联度法选取与预测日关联度最高的前10天的并网点功率数据和多元气象因子数据作为相似日样本,作为LSTM神经网络的训练集。

提取预测日的多元气象因子特征向量。

确定气象因子特征向量,分别提取温度,湿度,大气压力,风速,风向和辐射度的最大最小值以及辐射时长组成气象因子特征向量。

根据预测日的气象因子特征向量与各聚类中心的气象因子特征向量之间的欧氏度量,确定预测日气象因子特征向量所属的聚类簇。欧氏距离计算公式如下:

其中x

采用灰色关联分析选取预测日气象因子特征向量与聚类簇中气象因子特征向量之间的几何相似度,来获得它们之间的关联度。

选取预测日气象因子特征向量作为参考序列,选取聚类簇中气象因子特征向量作为比较序列。

参考序列表示为:Y=Y(k)|k=1,2...,k

比较序列表示为:X

对参考序列和比较序列进行无量纲化处理:

其中k对应时间段,i对应比较数列中的一行。

无量纲处理后计算关联度系数:

其中ρ表示分辨系数,通常取值范围为(0,1)之间,当p≤0.5463时分辨力最好,通常p=0.5。

计算关联度:

关联度从大到小排序,选取聚类簇中气象因子特征向量中相似度最高的前10天的并网点功率数据和多元气象因子数据作为相似日样本。

相似日中选用与预测日相关度最高的并网点功率数据和多元气象因子数据作为验证集,剩余的并网点功率数据和多元气象因子数据作为训练集,其中训练神经网络的输入数据为t-24时刻的并网点功率数据,t-24时刻的多元气象因子数据和t时刻的多元气象因子数据,训练神经网络的输出数据为t时刻的并网点功率数据。选取验证集的MSE作为算术优化算法的适应度函数,其中MSE如下:

LSTM神经网络可以将较长时间之前的信息输送给后面时间步长的细胞,有较大的记忆容量,有更强的泛化能力和自适应能力,可解决长时间依赖问题。LSTM神经网络结构如下:

其中W

将LSTM神经网络中神经网络隐藏层单元数目、迭代次数和学习率作为算术优化算法的寻优对象,初始化种群和相关参数r

算法通过数学优化器加速函数(MOA)选择搜索阶段,当r

其中Min、Max分别表示种群所处位置的最大值和最小值,t、T分别表示当前迭代次数和最大迭代次数。

其中全局搜索通过乘法运算与除法运算实现,当r

其中

其中,r

局部搜索通过加法运算与减法运算实现,其种群更新公式如下:

其中,r

将寻优得到的LSTM神经网络中神经网络隐藏层单元数目、迭代次数和学习率,代入训练LSTM神经网络。

将预测日的多元气象因子数据输入构建完成的LSTM神经网络,输出预测日的并网点功率。

附图说明

图1为本发明一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法流程图。

图2为LSTM神经网络拓扑结构。

图3为算术优化算法的流程图。

具体实施方法

下面结合附图对本发明做出进一步的阐述,但不能以此来限制本申请的保护范围。

在本实例中,参照图1所示,本发明提出了一种基于日相似聚类与Kmeans-GRA-LSTM的光伏电站短期功率预测方法,包括步骤:

获取某光伏电站的并网功率数据和某光伏电站所在地的多元气象因子数据。

其中多元气象因子数据中包括温度,湿度,大气压力,风速,风向和辐射度等气象因子。

对获取的并网点功率数据和多元气象因子数据进行预处理。

预处理的数据通常为缺失数据和异常数据。

对于异常数据和缺失数据均使用均值插补法进行补全,均值插补法如下:

其中x'

对获取的某光伏电站的并网点功率数据提取特征值。

选取特征值分别为日功率平均值,日标准差,日功率变异系数,日功率偏态,日功率峰态和日总功率。具体公式如下:

日平均功率:

其中N表示数据点的数目,数据点个数与每天的辐射度时长有关。P

日标准差:

日功率变异系数:

日功率偏态:

日功率峰态:

日总功率:

提取出每日特征值后组成功率特征向量。

功率特征向量=[日平均功率日标准差日功率变异系数日功率偏态日功率峰态日总功率]。

进行归一化处理,归一化公式如下:

其中x

选用K-means聚类算法对归一化后的功率特征向量进行聚类。

分别设置K的取值为2,3,4,5,6,依次进行K-means聚类并求解轮廓系数。

K-means聚类算法具体流程:

分别设置K的取值为2,3,4,5,6。

从样本集中随机选取K个样本作为簇中心。

计算所有样本与这K个簇中心的距离,对于每一个样本,将其划分到与其距离最近的簇中心所在的簇中,对于新的簇计算各个簇的新的簇中心。

重复上述步骤,直至簇中心不在移动。

由于使用K-means对功率特征向量聚类,聚类中心数目不确定,因此引入聚类评估算法轮廓系数,轮廓系数公式如下:

其中,计算样本i到同簇其他样本的平均距离a(i),a(i)越小,说明样本i越应该被聚类到该簇,将a(i)称为样本i的簇内不相似度。计算样本i到某簇C

根据求解的轮廓系数,选取最大轮廓系数所对应的K值作为K-means的簇中心数目。

根据并网点功率特征向量聚类结果对应多元气象因子特征向量,确定多元气象因子的特征向量包含风速、大气压、温度、湿度、风向、辐射度的最大值和最小值以及辐射时长。

多元气象因子的特征向量=[风速最大值风速最小值大气压最大值大气压最小值温度最大值温度最小值湿度最大值湿度最小值风向最大值风向最小值辐射度最大值辐射度最小值辐射时长]

并网点功率特征向量聚类结果与多元气象因子特征向量对应。

选取预测日的多元气象因子特征向量,使用灰色关联度法选取与预测日关联度最高的前10天的并网点功率数据和多元气象因子数据作为相似日样本,作为LSTM神经网络的训练集。

提取预测日的多元气象因子特征向量。

确定气象因子特征向量,分别提取温度,湿度,大气压力,风速,风向和辐射度的最大最小值以及辐射时长组成气象因子特征向量。

根据预测日的气象因子特征向量与各聚类中心的气象因子特征向量之间的欧氏度量,确定预测日气象因子特征向量所属的聚类簇。欧氏距离计算公式如下:

其中x

采用灰色关联分析选取预测日气象因子特征向量与聚类簇中气象因子特征向量之间的几何相似度,来获得它们之间的关联度。

选取预测日气象因子特征向量作为参考序列,选取聚类簇中气象因子特征向量作为比较序列。

参考序列表示为:Y=Y(k)|k=1,2...,k

比较序列表示为:X

对参考序列和比较序列进行无量纲化处理:

其中k对应时间段,i对应比较数列中的一行。

无量纲处理后计算关联度系数:

其中ρ表示分辨系数,通常取值范围为(0,1)之间,当p≤0.5463时分辨力最好,通常p=0.5。

计算关联度:

关联度从大到小排序,选取聚类簇中气象因子特征向量中相似度最高的前10天的并网点功率数据和多元气象因子数据作为相似日样本。

相似日中选用与预测日相关度最高的并网点功率数据和多元气象因子数据作为验证集,剩余的并网点功率数据和多元气象因子数据作为训练集,其中训练神经网络的输入数据为t-24时刻的并网点功率数据,t-24时刻的多元气象因子数据和t时刻的多元气象因子数据,训练神经网络的输出数据为t时刻的并网点功率数据。选取验证集的MSE作为算术优化算法的适应度函数,其中MSE如下:

LSTM神经网络可以将较长时间之前的信息输送给后面时间步长的细胞,有较大的记忆容量,有更强的泛化能力和自适应能力,可解决长时间依赖问题。LSTM神经网络结构如下:

f

i

o

h

其中W

将LSTM神经网络中神经网络隐藏层单元数目、迭代次数和学习率作为算术优化算法的寻优对象,初始化种群和相关参数r

算法通过数学优化器加速函数(MOA)选择搜索阶段,当r

其中Min、Max分别表示种群所处位置的最大值和最小值,t、T分别表示当前迭代次数和最大迭代次数。

其中全局搜索通过乘法运算与除法运算实现,当r

其中

其中,r

局部搜索通过加法运算与减法运算实现,其种群更新公式如下:

其中,r

将寻优得到的LSTM神经网络中神经网络隐藏层单元数目、迭代次数和学习率,代入训练LSTM神经网络。

将预测日的多元气象因子数据输入构建完成的LSTM神经网络,输出预测日的并网点功率。

本发明申请人结合说明书附图对本发明的具体实施方式进行了描述,本行业的技术人员应当明白,上述具体实施和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号