首页> 中国专利> 一种利用原子层沉积技术提高微型LED调制带宽的办法

一种利用原子层沉积技术提高微型LED调制带宽的办法

摘要

一种利用原子层沉积技术提高微型LED调制带宽的办法,涉及光通信技术领域。提供一种利用原子层沉积技术来提高微型LED调制带宽的办法;主要通过在Mini‑LED/Micro‑LED侧壁沉积一定厚度的ALD来降低载流子寿命以获得较高的调制带宽,并最终实现提高VLC通信速率的目的;通过修复侧壁损伤,降低载流子寿命同时进一步提高器件调制带宽和发光强度的目的,通过降低载流子寿命以提高Mini‑LED/Micro‑LED调制带宽,从而进一步提高系统的通信速率;通过改善载流子寿命提高其发光强度,从而进一步增加系统的通信距离。对未来推动这种频谱丰富、高保密性高的通信方式的普遍应用有着积极促进作用。

著录项

  • 公开/公告号CN113851568A

    专利类型发明专利

  • 公开/公告日2021-12-28

    原文格式PDF

  • 申请/专利权人 厦门大学;

    申请/专利号CN202110954861.3

  • 申请日2021-08-19

  • 分类号H01L33/44(20100101);C23C16/40(20060101);C23C16/455(20060101);H04B10/116(20130101);

  • 代理机构35200 厦门南强之路专利事务所(普通合伙);

  • 代理人马应森;曾权

  • 地址 361005 福建省厦门市思明区思明南路422号

  • 入库时间 2023-06-19 13:26:15

说明书

技术领域

本发明涉及光通信技术领域,尤其是涉及一种利用原子层沉积技术提高微型LED调制带宽的办法。

背景技术

光通信技术是指利用可见光波段的光作为信息载体,不使用光纤等有线信道的传输介质,而在空气中直接传输光信号的通信方式。Mini-LED/Micro-LED光通信是基于Mini-LED/Micro-LED具有切换速度快的特点,利用配备有Mini-LED/Micro-LED的照明设备和电子显示屏等发出的用肉眼无法识别的高速光波信号来对信息进行调制和传输,然后通过APD等光电转换器接收光信号并从光信号中恢复出原始信息的通信技术。无论是应用于何种场景的光通信系统,其均由输入和处理电路、驱动调制电路、光学系统以及光电探测器等组成;其中,驱动调制电路、输入和处理电路共同构成光通信系统的光发射部分。光发射部分的功能是将信号源信号转换成便于信道传输的电信号以及将电信号调制成相应的光信号。而光学系统和光电探测器等模块构成光通信系统的光接收部分。光接收部分实现的功能正好与光发射部分相反,即主要完成光信号的接收和转换。

光通信作为下一代高速接入技术的一个有前途的解决方案,是射频通信的重要补充。相比较传统的射频通信,光通信具有诸多优点:一是带宽资源丰富,当前广泛使用的射频通信,其电磁波频谱资源十分有限,并且需要审批授权。而光通信除能够提供丰富的频谱资源外,还无需相关机构授权;二是安全性高,光通信技术的传输媒介是可见光,因为可见光无法穿透墙壁等遮挡物,所以传输被限制在一定范围内,这就能够有效地避免传输信息的泄露,从而保证信息的安全性;三是应用领域广,光通信不产生电磁辐射,也不容易受外部电磁干扰影响,因此能够广泛应用在对电磁干扰敏感的特殊场合,如加油站和医院等。

虽然光通信可以满足用户在高速、安全等方面的要求,并且为无线通信提供一种全新的接入方式。但是,光通信本身存在一定的局限性,即当前VLC系统中可用光源的调制带宽不高,因此阻碍该项技术的大规模应用。

LED调制带宽满足公式:

式中,τ、d、e和J分别代表载流子寿命、有源层厚度、基本电荷以及注入电流密度,B代表辐射复合系数。由上述公式可见,LED的调制带宽会随着载流子寿命的降低而提高。

VLC系统中常用的光源是基于InGaN量子阱的C面微型发光二极管,但目前光源的调制带宽会受到载流子复合速率的固有限制,但随着芯片尺寸的减低,芯片的电流密度注入效率可以明显提升,载流子寿命相较于与普通LED明显缩短,因此小尺寸LED芯片在光通信领域有着广阔的应用前景,但是目前小尺寸Ш族氮化物LED的制备方法还是主要通过干法蚀刻技术,这种方法不可避免会对芯片侧壁造成损伤,这些会导致Mini-LED/Micro-LED发热加剧性能下降,特别是会使载流子寿命增,发光强度减弱,从而限制光通信的速率和距离,阻碍了光通信的普及。

发明内容

本发明的目的在于针对现有技术存在的上述问题,提供一种利用原子层沉积技术来提高微型LED调制带宽的办法;主要通过在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD来降低载流子寿命以获得较高的调制带宽,并最终实现提高VLC通信速率的目的;通过在Mini-LED/Micro-LED表面形成一定厚度的ALD钝化层除能提升通信速率外,还可以增大器件的发光强度,进而增加系统的通信距离。

本发明所述利用原子层沉积技术提高微型LED调制带宽的办法,包括以下步骤:

1)利用干法刻蚀技术制备Mini-LED/Micro-LED;

2)采用ALD沉积法,在干法刻蚀后的Mini-LED/Micro-LED侧壁沉积一层ALD钝化层,用于修补被等离子刻蚀造成的破坏性表面;

3)在光通信系统的发送端采用步骤2)制备所得Mini-LED/Micro-LED作为光源,即可实现提高微型LED调制带宽。

在步骤2)中,所述ALD钝化层的厚度可为70~150nm。

以下给出本发明的原理:

微型发光二极管的调制带宽满足公式(1):

从上式可以看出,调制带宽主要取决于Mini-LED/Micro-LED的载流子寿命。

Mini-LED/Micro-LED的总载流子寿命τ,可以用式(2)描述:

式中,τ

目前制造Ш族氮化物Mini-LED/Micro-LED的最主要方法是采用干法刻蚀技术,但是干法蚀刻技术会对器件侧壁造成不可避免的损坏。侧壁缺陷产生后,在相同注入电流密度下的载流子浓度会降低。此外,侧壁缺陷也会降低QCSE的库仑屏蔽效应,并且由于量子阱中电子和空穴的波函数重叠较少,辐射复合系数B也变小。因此,由载流子浓度和辐射复合系数B共同决定的辐射复合寿命τ

目前对侧壁缺陷进行修复最常采用的方法是PECVD法,该方法的原理是在低气压下,利用低温等离子体在工艺腔体的阴极上产生辉光放点,利用辉光放点使样品升温到预定的温度,然后通入适量的工艺气体,这些气体经一系列化学反应和等离子体反应,最终在样品表面形成固态薄膜。该方法虽然原理简单,但是存在对气体纯度要求高、沉积层均匀性不佳等缺点。本发明采用ALD沉积法,即通过在Mini-LED/Micro-LED侧壁沉积一定厚度ALD的方法进行缺陷修复。由于使用ALD方法可以很好的阻挡水汽,所以相较于前一种方法具有无颗粒、无针孔薄膜、在非平整表面甚至纳米颗粒上都可以有极高的保形性和覆盖性能好等优点。

在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD层,能够有效减小侧壁缺陷对器件的损坏,明显提升器件的通信性能。一是,可以通过降低Mini-LED/Micro-LED的总载流子寿命时间,提高Mini-LED/Micro-LED的调制带宽,进而增加光通信的信息传输速率;二是,明显改善Mini-LED/Micro-LED的发光强度,因此提高VLC系统的通信距离。

本发明利用在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD层,通过修复侧壁损伤,降低载流子寿命同时进一步提高器件调制带宽和发光强度的目的,具有很好的创新型和可行性。本发明利用ALD对Mini-LED/Micro-LED的侧壁进行修复,通过降低载流子寿命以提高Mini-LED/Micro-LED调制带宽,从而进一步提高系统的通信速率;通过改善载流子寿命提高其发光强度,从而进一步增加系统的通信距离。对未来推动这种频谱丰富、高保密性高的通信方式的普遍应用有着积极促进作用。

附图说明

图1为本发明实施例所制备的具有ALD结构的Mini-LED/Micro-LED器件用于实际通信系统的原理图。

图2为本发明实施例所制备的具有ALD结构的Mini-LED/Micro-LED器件结构示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下实施例将结合附图对本发明进行作进一步的说明。应当理解,此处所描述的具体实施例仅为本发明可以实施的具体实例举例,仅用于解释本发明,并不用于限定本发明。

以下实施例将结合附图对本发明做进一步说明。

参见图1,描述Mini-LED/Micro-LED的ALD侧壁修复过程以及该器件用做光通信系统光源时,系统实现信息交互的过程。

以太网信号1被传输到驱动模块2中,驱动模块2将输入信号和直流信号进行耦合,并将耦合得到的信号加载到Mini-LED/Micro-LED 3的两端,完成信号的发射。

Mini-LED/Micro-LED3发出的光信号经自由空间传播到达光信号接受模块4,由光信号接受模块4做进一步处理后,传递给信号接收端5,完成信号的接收。

在发送端选用本发明提供的器件Mini-LED/Micro-LED 3作为光源,能使该可见光通信系统的通信速率和通信距离明显提升。

参见图2,以下给出一种具有原子层沉积的Mini-LED/Micro-LED的制备方法,包括如下步骤:

步骤1:通过金属有机化学气相沉积法在蓝宝石衬底3-1上生长未掺杂GaN层缓冲层3-2、掺硅的n型GaN层3-3、InGaN/GaN多量子阱3-4、掺镁p型GaN层3-5以及透明电极3-6。

步骤2:结合光刻技术,通过电感耦合等离子体蚀刻形成台面区,通过热退火实现p型欧姆接触。

步骤3:在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD 3-7。

利用干法刻蚀技术制备Mini-LED/Micro-LED,会造成Mini-LED/Micro-LED侧壁缺陷。侧壁缺陷使得Mini-LED/Micro-LED的发光强度减弱载流子寿命增加,从而影响光通信的通信速率与距离。因此,若想实现高速长距离的光通信,必须设法修复刻蚀形成的侧壁缺陷。而ALD能形成超薄、无针孔的薄膜的特性,使它可以均匀、保形地覆盖至纳米级别的高台阶落差结构以及气孔、沟槽、空隙和孔洞的内部。因此,ALD薄膜优异的保型性使其在一些非常具有挑战性的特殊形貌与3D纳米结构的Mini-LED/Micro-LED表面实现出色的钝化保护层,从而提高Mini-LED/Micro-LED的性能。用ALD在Mini-LED/Micro-LED表面沉积一层钝化膜可以很好的修补被等离子刻蚀造成的破坏性表面,可有效降低漏电流,显著降低载流子寿命并提高LED的效率和发光强度,从而实现高速长距离的可见光系统。以ALD-Al

步骤4:使用电子束蒸发依次蒸发具有不同图案的铬/铝/钛/金金属,以分别形成p型电极3-9和n型电极3-8。

本发明制备的Mini-LED/Micro-LED器件无需使用任何其它特殊材料,而是通过在Mini-LED/Micro-LED侧壁沉积合适厚度的ALD,从而获得低载流子寿命和高发光强度等优异性能。低载流子寿命使得器件具有高调制带宽,因此能够提高系统的通信速率;高发光强度使得器件发出的光信号能传输到更远的范围,从而增加系统的通信距离。

表1给出不同芯片尺寸Mini-LED在ALD钝化处理后调制带宽结果对比。

表1

从表1可以看出,三种不同芯片尺寸的Mini-LED在ALD钝化处理后,芯片载流子寿命都呈现下降趋势,带宽都得到提升。在驱动电流密度为823A/cm

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号