首页> 中国专利> 一种基于一维多输入卷积神经网络的信道编码盲识别方法

一种基于一维多输入卷积神经网络的信道编码盲识别方法

摘要

本发明公开了一种基于一维多输入卷积神经网络的信道编码盲识别方法,包括:S1、构建信道编码样本集;S2、对信道编码样本集中的样本分别进行传统特征提取和组词处理,将组词处理后的词作为第一输入值;S3、将传统特征提取中提取的特征均表示为一维特征向量,进行维度补齐后合并为特征矩阵,特征矩阵为第二输入值;S4、构建一维多输入卷积神经网络模型;S5、训练并获得最终模型;S6、采集待识别的信道编码二进制流数据,获取第一输入值和第二输入值后输入最终模型进行编码识别,判定类别次数中最多的一类作为实际编码类型和编码参数。本申请提高了信道编码识别准确度和泛化性,简化了传统生成矩阵识别的方法,计算量少、扩展性强。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-06-14

    授权

    发明专利权授予

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号