首页> 中国专利> 一种蓝绿光增强型的硅基雪崩光电二极管

一种蓝绿光增强型的硅基雪崩光电二极管

摘要

本发明公开了一种蓝绿光增强型的硅基雪崩光电二极管,该雪崩光电二极管包括硅吸收层,所述硅吸收层两侧为P+高掺杂层,硅吸收层下面依次为场控层、倍增层非耗尽层,硅吸收层上面为二维类材料,二维类材料与硅吸收层组成的异质结共同成为雪崩光电二极管的吸收层。二维材料具有超大的比表面积,良好的面内热电导率,超高的载流子迁移率,以及相对较小的杨氏模量,提高了高频光电探测器的响应度;吸收层位于器件的表层,形成倒装结构,避免了离子注入产生的缺陷吸收,从而使入射的蓝绿光波段能够被充分有效的吸收;产生的电场为垂直电场,提高器件的量子效率,减小了漏电流。

著录项

  • 公开/公告号CN113054048A

    专利类型发明专利

  • 公开/公告日2021-06-29

    原文格式PDF

  • 申请/专利权人 北京邮电大学;

    申请/专利号CN202110277300.4

  • 申请日2021-03-15

  • 分类号H01L31/107(20060101);H01L31/0216(20140101);H01L31/0336(20060101);H01L31/0352(20060101);

  • 代理机构

  • 代理人

  • 地址 100876 北京市海淀区西土城路10号

  • 入库时间 2023-06-19 11:39:06

说明书

技术领域

本发明涉及一种蓝绿光增强型的硅基雪崩光电二极管,尤其是能增强对蓝绿光波段的吸收、响应度和量子效率,可应用于水下通信与探测,其属于硅基雪崩光电探测器技术领域。

背景技术

水下光信号的传输距离主要由光探测器的灵敏度决定,基于雪崩倍增效应的雪崩光电探测器(APD),是光电探测器灵敏度的极限。蓝绿光波段(400nm-550nm)是水中的吸收衰减系数最小,穿透能力最强的光窗口,弱通信信号的接收辨别取决于对蓝绿光探测能力。对于硅材料,蓝绿光波段的吸收系数约为10

二维材料具有超大的比表面积,良好的面内热电导率,超高的载流子迁移率,以及相对较小的杨氏模量,促使了它们在超快响应的高频光电探测器中的应用。此处以二硫化钼具体描述,二硫化钼的带隙和它的层数有很大的关联性,具体的关系为,随着二硫化钼层数的减少,它的带隙会越来越大,当二硫化钼最终减薄到单层时,它的能带间隙达到最大值,约为1.85eV,同时其能带结构变为直接带隙半导体结构,对应的激光响应截止波长在670nm左右,适用于对蓝绿光的吸收,将单层二硫化钼引入吸收层,以提高对蓝绿光的吸收,并且建立器件内部垂直电场。

发明内容

为克服现有硅雪崩探测器中吸收层过深的技术问题,本发明提供了一种可以提高蓝绿光响应度、量子效率和灵敏度的硅基雪崩光电二极管及其制备方法。

为实现本发明的目的,采用以下技术方案予以实现:

一种蓝绿光增强型的硅基雪崩光电二极管,所述雪崩光电二极管阵列为SACM型APD,包括硅表面吸收层,所述硅表面吸收层两侧为欧姆接触层,所述硅表面吸收层下面依次为:场控层、倍增层、非耗尽层;且所述场控层、倍增层和非耗尽层依次连接,所述硅表面吸收层之上覆盖有二维类材料,所述二维类材料远离场控层,与所述硅表面吸收层组成的异质结共同成为硅雪崩光电二极管的吸收层;且所述硅表面吸收层之上的二维类材料两侧连接有第一电极,所述非耗尽层连接有第二电极,所述二维类材料与第一电极上面铺有蓝绿光波段的增透膜,所述APD结构两侧覆有二氧化硅绝缘层,以减少漏电流。

其中,所述硅表面吸收层为π型硅,掺杂浓度为10

本发明所提供的硅基APD为倒装结构,所述的表面硅表面吸收层和二维类材料组成的APD的吸收层位于器件的表层,从而使入射的蓝绿光波段能在表层被充分的吸收,欧姆接触层与硅表面吸收层构成的一层面积大于下面的场控层、倍增层和非耗尽层,形成漏斗形台面结构,同时器件的第一电极和第二电极(阳极和阴极)均位于器件的顶部和底部,产生的电场为垂直电场,提高器件的量子效率,减小了漏电流。其工作过程是,在反向偏压的作用下,光照射在APD表面,入射光透过增透膜直接照射吸收层,当入射光的光子能量大于硅的禁带宽度时,在吸收层中入射的光子能量被吸收产生电子-空穴对,电子沿着电场方向向N型硅扩散,空穴向P型硅扩散,当反向偏压足够大时将引起载流子的雪崩倍增,形成大的反向电流,从而形成光电转换。

为形成保护环减小漏电流,所述非耗尽层的面积略小于倍增层的面积。优选地,所述非耗尽层嵌在所述倍增层中。进一步优选地,所述非耗尽层的面积为倍增层的面积的50%~99%。

进一步地,所述吸收层上还覆有增透膜,所述增透膜为HLH结构,H为高折射率层,L为低折射率层,高折射率材料为硫化锌,n

进一步地,阴极和阳极可采用Au、Ag、Cu、Al、Cr、Ni、Ti等一种或几种的合金。

进一步地,可以将APD进行阵列排列,各硅基雪崩光电二极管单元之间通过绝缘材料SiO

进一步地,所述吸收层的厚度为1~7μm;所述隔离沟道深度为1~20μm;步骤S3中所述隔离区深度为0.1~15μm;所述增透膜的厚度为0.1~5μm。

附图说明

图1为本发明所述的基于二硫化钼增强蓝绿光型的台式硅基雪崩光电二极管的平面图;附图说明:1增透膜;2第一电极;3二维类材料;4硅表面吸收层;5欧姆接触层;6场控层;7倍增层;8非耗尽层;9二氧化硅;10第二电极。

图2为本发明所述的基于二硫化钼增强蓝绿光型的台式硅基雪崩光电二极管的制作流程图;

图3为本发明所述的增透膜射谱图。

附图说明:1层膜为AHG系统,3层膜为AHLHG系统,5层膜为AHLHLHG系统,7层膜为AHLHLHLHG系统,其中A为空气层,G是基底层,H为高折射率层,L为低折射率层。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明实施方式作进一步详细地说明。此处以二维类材料为单层二硫化钼为例。

如图1所示,本实施例提供了一种蓝绿光增强型的硅基雪崩光电二极管,所述雪崩光电二极管阵列为SACM型APD,包括硅表面吸收层4,所述硅表面吸收层两侧为欧姆接触层5,所述硅表面吸收层下面依次为:场控层6、倍增层7非耗尽层8,且所述场控层、倍增层和非耗尽层依次连接,所述硅表面吸收层上面为二维类材料3,二维类材料与所述硅表面吸收层组成的异质结共同成为雪崩光电二极管的吸收层,且所述二维类材料两侧之上连接有第一电极2,所述非耗尽层连接有第二电极10,所述二维类材料之上与两第一电极之间铺有蓝绿光波段的增透膜1。

本实施例提出的基于蓝绿光增强型的硅基雪崩光电二极管的制作方法,其中,所述硅表面吸收层为π型硅,掺杂浓度为10

(1)首先选取外延为π型硅,掺杂浓度为10

(2)将外延片进行表面清洁处理,然后烘干,在外延片表面涂覆光刻胶,通过曝光、显影后得到掩膜图形。

(3)通过热氧化法、气相外延生长法或者分子束外延法制备SiO

(4)利用去胶液去除硅片表面的光刻胶。

(5)利用湿法腐蚀或干法刻蚀等方法去除部分吸收层形成隔离区。

(6)对外延片进行清洁处理,然后烘干。再通过离子注入的方法制备P+型衬底层,注入B离子,掺杂浓度为10

(7)利用湿法腐蚀去除外延片表面SiO

(8)在外延片表面涂覆光刻胶,通过光刻工艺制备掩膜图形。

(9)通过气相沉积法制备SiO

(10)利用去胶液去除硅片表面的光刻胶。

(11)对外延片表面进行清洁处理,然后烘干。再通过离子注入的方法进行场控层的制备,注入B离子,掺杂浓度为10

(12)再次通过离子注入的方法制备倍增层,注入P离子,利用杂质补偿作用,使其有效B离子掺杂浓度为10

(13)对外延片进行清洁处理,烘干。在外延片表面涂覆光刻胶,通过光刻工艺制备出掩膜图形。

(14)通过气相外延法或分子束外延法等技术在外延片表面制备SiO

(15)去胶液去除硅片表面的光刻胶。

(16)对外延片进行清洁处理,然后烘干。再次通过离子注入的方法制备非耗尽层,注入P离子,掺杂浓度为10

(17)对硅片进行清洁处理,烘干。在外延片表面涂覆光刻胶,通过光刻工艺制备出电极的掩膜图形。

(18)通过蒸发镀膜、磁控溅射或者电镀的方法制备APD的电极(第二电极),电极材料可以是Au、Ag、Cu、Al、Cr、Ni、Ti的一种或几种的合金。

(19)浸泡丙酮剥离硅片表面的光刻胶,然后利用湿法腐蚀、干法刻蚀或者两者结合的方法去除单晶硅片。

(20)通过常压CVD法在吸收层表面生长一层掺Nb的单层MoS

(21)对单层MoS

(22)通过蒸发镀膜、磁控溅射或者电镀的方法制备APD的电极(第一电极),电极材料可以是Au、Ag、Cu、Al、Cr、Ni、Ti的一种或几种的合金。

(23)利用丙酮剥离硅片表面的光刻胶。

(24)对单层MoS

(25)在单层MoS

(26)最后通过浸泡丙酮剥离光刻胶。

上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号