首页> 中国专利> 一种基于中长波平顺性的精捣调整量优化方法

一种基于中长波平顺性的精捣调整量优化方法

摘要

本发明公开了一种基于中长波平顺性的精捣调整量优化方法。随着高速铁路运营和普速铁路提速,轨道中长波不平顺对行车性能的影响越来越显著,大型养路机械精确维修作为改善有砟线路状态的主要措施,对中长波不平顺的控制效果仍不充分,为有效改善线路状态,本方法以轨道中长波平顺性控制标准及轨道精测数据为基础,建立了基于中长波平顺性的轨道精捣调整量计算模型,结合基础优化单元分组求解的优化思路,依据非线性规划理论求解得到最优捣固方案,并利用车辆‑轨道耦合动力学模型对作业方案进行评估,实现了对轨道中长波不平顺的控制与约束。本方法可以弥补传统捣固方法的缺陷,特别是在消除中长波不平顺方面,从而有效提升有砟轨道线路质量。

著录项

说明书

技术领域

本发明涉及铁路工程技术领域和最优化处理,特别是涉及一种基于中长波平顺性的精捣调整量优化方法。

背景技术

确保良好的轨道平顺性是有砟铁路安全运营的基础与关键,而精捣综合作业质量对轨道平顺性的提升有着至关重要的作用。

近年来,普遍采用大型养路机械精确维修来改善有砟铁路线路状态,作业效果受道砟密实度、起拨量比例、钢轨硬弯等因素影响,很难达到预期效果,尤其对中长波不平顺的控制效果仍不充分,往往需要增加作业遍数以达到期望值,但受到现场作业条件限制,精捣后期可调量范围有限,盲目追求平顺性目标反复进行作业,反而破坏了轨道整体稳定性引起道砟劣化,造成捣后轨道质量指数(Track Quality Index,简称TQI)不降反升的情况。

现有线路优化及精调控制模型往往以无砟轨道验收标准为优化目标,缺乏对有砟轨道养护维修作业适用性的考虑。传统的有砟铁路线路养护维修措施,由于缺乏精确捣固数据支持,仅调整和恢复轨道几何形位的相对状况,中长波不平顺控制及线形几何参数的恢复都达不到理想效果。

发明内容

针对现有技术中存在的缺陷,本发明的目的是提供一种基于中长波平顺性的精捣调整量优化方法,本发明所要解决的技术问题是:分析轨道中长波不平顺对行车性能的影响,探讨检测弦长和管理幅值,研究基于中长波平顺性的起拨量优化算法,从而为进一步提升有砟高铁精捣效果提供参考。

为达到以上目的,本发明采取的技术方案是:

一种基于中长波平顺性的精捣调整量优化方法,所述方法以控制轨道中长波不平顺作为调整目标计算精捣调整量,具体包括以下步骤:

A.以轨道绝对精测数据为基础,掌握待调整线路的实际位置与原始设计位置在平纵断面的中线偏差大小,并确定该线路在30m、60m、300m等中长波不平顺检测弦长跨度内的中长波平顺性控制标准;

B.分析轨道中长波平顺性状态,计算整段待调整线路的精捣调整量;

B-1.根据步骤A得到的待调整线路的中线偏差大小,以30m、60m、300m等中长波不平顺检测弦长为基准,通过逐点移动检测弦,将待调整线路进行区域划分,设定最长检测弦为基础优化单元,基础优化单元内采用中点弦矢距法和矢距差法计算轨道中长波不平顺,移动基础优化单元遍历整段待调整线路,得到该线路在各检测弦范围内的中点矢距和矢距差,该线路在各检测弦范围内的中点矢距和矢距差为轨道中长波不平顺结果,将轨道中长波不平顺结果与步骤A中确定的中长波平顺性控制标准进行比对,判断不平顺超限位置,确定待调整点里程分布情况;

B-2.采集步骤B-1得到的轨道中长波不平顺结果和待调整点里程分布情况,设计符合中长波平顺性控制标准的平纵断面优化线形,该优化线形与轨道实际线形之间的差值等于拟调整量绝对值;对基础优化单元内的各点拟调整量绝对值进行求和,以实现求和值最小作为优化线形的设计目标,目标函数

式中,

B-3.在步骤B-2建立的目标函数的基础上,建立起轨道各点拟调整量与平顺性指标相关联的函数关系,然后建立中长波平顺性约束条件,令:各待调整点

利用剩余偏差

式中,

进一步实现了对轨道中长波不平顺的控制与约束,平顺性约束条件表达式为:

式中,

B-4.求解基础优化单元内各点拟调整量,将步骤B-3所述的约束条件转化为矩阵不等式组:

式中,

利用非线性规划求解上述矩阵不等式组,得到基础优化单元各点拟调整量,按照轨道待调整点里程分布情况顺序逐点移动基础优化单元,使各待调整点对应的中长波平顺性均满足约束要求,从而完成精捣调整量计算。

C.评估作业目标线形,对整体精捣调整量进行改进和优化。

C-1.根据步骤B计算的精捣调整量,推算精捣作业目标偏差,即平纵断面优化线形;建立车辆-轨道耦合动力学模型,利用动力学模型分析目标线形对应的轨道状态下的车体加速度、轮重减载率、脱轨系数等行车响应,评估精捣调整量优化方法对轨道中长波不平顺的控制效果;

C-2.依据步骤C-1的评估结果,调整步骤A中的中长波平顺性控制标准,重复步骤B,再次计算整段待调整线路的精捣调整量,得到对应的平纵断面优化线形,将更新前后优化线形的中长波平顺性状态进行反复调整比较,最终取得满意的精捣调整方案。

本发明的有益效果是:以铁路线路中长波不平顺控制理论为基础,实现线路精捣调整量的计算,消除中长波不平顺,为进一步提升有砟铁路精捣效果提供参考。首先,本发明关于精捣调整量的计算方法考虑了行车安全性、稳定性的主要影响因素——轨道中长波不平顺,能有效提高线路状态对乘客乘坐舒适性的主观感受;其次,本发明主要用于有砟轨道养护维修作业阶段,采用最优化理论,计算各待调整点精捣作业量,用于指导大型养路机械对轨道线形进行调整;最后,本发明利用动力学模型,采用模拟仿真手段,验证精捣方案的调整效果,便于进一步修正精捣方案,提高轨道平顺性。

本发明为铁路线路消除中长波不平顺提供了一种科学的方法,研究成果具有重要科学价值,对实际线路精捣工程具有指导意义。

附图说明

本发明有如下附图:

图1为基础单元逐点移动并分组优化示意图;

图2为中点矢距法计算原理示意图;

图3为矢距差法计算原理示意图;

图4是本发明精捣调整量优化方法流程图。

具体实施方式

以下结合附图对本发明作进一步详细说明。

如图1、图4所示,一种基于中长波平顺性的精捣调整量优化方法,该方法具体实施方式如下:

1)掌握待调整线路实际位置,确定中长波平顺性控制标准,为制定精捣方案提供依据。轨道精测采用“绝对+相对”的方式,依托快速轨道测量小车,精确采集内部、外部轨道几何形位,生成以铁路轨道施工坐标系为基准的位置数据,将待调整线路的实际位置与原始设计位置进行比较,得到待调整线路的实际位置与原始设计位置在平纵断面的中线偏差大小。参考我国铁路管理规范及工务部门养护维修习惯,采用10m弦正矢2mm、5/30m弦矢距差2mm、60m弦正矢10mm、150/300m弦矢距差10mm等管理值,作为计算精捣方案的控制指标。

2)利用中长波不平顺检测弦长对线路进行区域划分,如图1所示,设定覆盖范围最广的检测弦为基础优化单元,基础优化单元内采用中点弦矢距法和矢距差法计算轨道中长波不平顺。图2表示了中点矢距法计算原理,设中点矢距法的检测弦为

式中,

矢距差法原理如图3所示,设矢距差法的最长基准弦为

式中,

逐点移动基础优化单元,遍历整段待调整线路,得到该线路在各检测弦范围内的中点矢距和矢高,即轨道中长波不平顺,将轨道中长波不平顺结果与中长波平顺性控制标准进行比对,判断不平顺超限情况,确定待调整点里程分布情况。

3)建立基于中长波平顺性的精捣调整量计算模型,模型分为设计目标、建立轨道各点拟调整量与平顺性指标相关联的函数关系、平顺性约束和迭代求解四个环节。

(a)规划符合10m/2mm、60m/10mm、300m/10mm等管理标准的优化线形,该优化线形与轨道实际线形之间的差值等于拟调整量绝对值,对所述基础优化单元内的各点拟调整量绝对值进行求和,以实现求和值最小作为优化线形的设计目标,目标函数

式中,

(b)建立轨道各点拟调整量与平顺性指标相关联的函数关系。

设各待调整点

利用剩余偏差

式中,

进一步实现了对轨道中长波不平顺的控制与约束,平顺性约束条件表达式为:

式中,

(c)将约束条件转化为矩阵不等式组进行模型迭代求解。

式中,

利用非线性规划求解上述矩阵不等式组,得到基础优化单元各测点拟调整量,按照轨道待调整点里程分布情况顺序逐点移动基础优化单元

4)推算优化线形,评估轨道平顺性控制效果。

建立某CRH动车组车辆-轨道耦合动力学模型,车辆模型考虑车体、转向架、轮对、悬挂系统、减振器及抗侧滚扭杆等关键零部件;轨道及线下结构模型考虑钢轨、轨道板、路基、桥梁等部件;轮轨接触采用Kalker线性接触理论计算轮轨蠕滑力和蠕滑力矩,具体采用FASTSIM算法计算轮轨作用力;轨道中长波不平顺为优化后线路偏差,进行列车运行仿真,计算该中长波不平顺状态下的车体加速度、轮重减载率、脱轨系数等行车响应,评估精捣调整量优化方法对轨道中长波不平顺的控制效果。

5)根据评估结果调整中长波平顺性控制标准,再次计算整段待调整线路的精捣调整量,确定最终精捣调整方案。

本发明以考虑轨道中长波平顺性的精捣调整量计算方法指导大型养路机械捣固作业,弥补了常规养护维修对中长波平顺性控制能力不足的缺点,具有重要的理论意义和工程实用价值。

本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号