首页> 中国专利> 一种基于开尔文探针力显微镜的表面电势测量方法

一种基于开尔文探针力显微镜的表面电势测量方法

摘要

本发明属于材料测试技术领域,具体涉及了一种基于开尔文探针力显微镜的表面电势测量方法。利用开尔文探针力显微镜测量得到的针尖一倍频振幅、二倍频振幅与针尖上施加的直流偏压的关系曲线,确定开尔文探针力显微镜测量表面电势时针尖与样品的距离,最终以此针尖与样品的距离实现对样品表面电势的准确测量。

著录项

  • 公开/公告号CN107255738A

    专利类型发明专利

  • 公开/公告日2017-10-17

    原文格式PDF

  • 申请/专利权人 电子科技大学;

    申请/专利号CN201710486841.1

  • 申请日2017-06-23

  • 分类号

  • 代理机构电子科技大学专利中心;

  • 代理人李明光

  • 地址 611731 四川省成都市高新区(西区)西源大道2006号

  • 入库时间 2023-06-19 03:30:12

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-14

    授权

    授权

  • 2017-11-14

    实质审查的生效 IPC(主分类):G01Q60/00 申请日:20170623

    实质审查的生效

  • 2017-10-17

    公开

    公开

说明书

技术领域

本发明属于材料测试技术领域,具体涉及了一种基于开尔文探针力显微镜的表面电势测量方法。

技术背景

在材料的微观分析中,经常需要测量材料微区的表面电势,现有技术中对于表面电势测量的有效方法是开尔文探针力显微镜技术。

传统开尔文探针力显微镜利用外加直流偏压反馈回路来抵消针尖与样品之间的电场,从而测得样品的表面电势。这种测量方法虽然具有直接、快捷、分辨率高的优点,但是,在半导体材料的测试中,针尖上的直流偏压会导致半导体材料发生能带弯曲;在绝缘体材料的测试中,针尖上的直流偏压会导致绝缘体材料发生表面电荷聚集,进而导致材料表面电势测量不准确。

双谐振开尔文探针力显微镜能够在不加直流反馈回路的情况下,进行表面电势的测量,避免了传统开尔文探针力显微镜中存在的问题。在文献Collins L,Kilpatrick J I,Bhaskaran M,et al.Dual harmonic Kelvin probe force microscopy for surfacepotential measurements of ferroelectrics[C]//Applications of FerroelectricsHeld Jointly with 2012 European Conference on the Applications of PolarDielectrics and 2012International Symp Piezoresponse Force Microscopy andNanoscale Phenomena in Polar Materials.IEEE,2012:1-4.中公开了一种双谐振开尔文探针力显微镜测量表面电势的方法,该方法在测量过程中,令直流偏压Vdc=0V,给探针施加交流电压Vac使其在频率ω、频率2ω发生简谐振动得到一倍频振幅Aω与振动相位以及二倍频振幅A,根据如下关系式得到样品表面电势:

其中,k表示探针的弹性系数,C表示样品与针尖之间的电容,Z表示针尖与样品的距离,Vsp表示样品的表面电势。

为了避免样品与探针之间的作用力对测量结果的影响,扫描过程中采取抬针模式测量一倍频振幅Aω、二倍频振幅A以及振动相位信号;在该测量方法中,由公式(1)可知一倍频振幅Aω与交流电压Vac需满足线性关系,由公式(2)可知二倍频振幅A与交流电压Vac满足抛物线关系;当抬针模式中针尖与样品的距离Z较高或较低时会导致两种关系不成立,从而导致该方法测量样品表面电势不准确。

因此,现有技术公开的开尔文探针力显微镜测量表面电势的方法中存在针尖与样品距离不确定,样品表面电势测量不准确的问题。

发明内容

本发明的目的在于,提供一种基于开尔文探针力显微镜的表面电势测量方法,通过确定测量过程中针尖与样品距离,解决样品表面电势测量不准确的问题。

为解决上述技术问题,本发明提供的技术方案是,一种基于开尔文探针力显微镜的表面电势测量方法,包括如下步骤:

步骤1、将待测样品固定在位于扫描管上方的样品台上,令探针外加直流电压Vdc=0V,使开尔文探针力显微镜工作在双谐振模式;

步骤2、使探针与样品之间的交流电压Vac在0V~10V范围内按固定步长线性增加,针尖与样品距离为Z,测量过程中扫描管向探针方向移动;利用锁相放大器监测一倍频振幅Aω与二倍频振幅A信号,得到不同交流电压Vac下,一倍频振幅Aω、二倍频振幅A随针尖与样品距离Z改变的关系曲线;

步骤3、提取针尖与样品距离Z=0nm时,一倍频振幅Aω与交流电压Vac的关系曲线Aω-Vac、二倍频振幅A与交流电压Vac的关系曲线A-Vac

步骤4、若关系曲线Aω-Vac满足线性关系且关系曲线A-Vac满足抛物线关系,则转至步骤6,否则转至步骤5;

步骤5、令Z=Z+1nm,转至步骤4;

步骤6、输出针尖与样品距离Z的数值;

步骤7、将针尖移动至样品待测位置,设置针尖与样品距离为步骤6的输出值,令探针外加交流电压Vac为1V~5V,对样品进行扫描,利用锁相放大器监测探针的一倍频振幅Aω、二倍频振幅A以及相位信号,并输出到计算机;

步骤8、将计算机接收到的一倍频振幅Aω、二倍频振幅A以及相位信号代入公式计算得到样品表面电势,完成测量。

本发明的有益效果是,通过开尔文探针力显微镜测量得到的针尖一倍频振幅、二倍频振幅与针尖上施加的直流偏压的关系曲线,确定开尔文探针力显微镜测量表面电势时针尖与样品的距离,最终以此针尖与样品的距离实现对样品表面电势的准确测量。

附图说明

图1是开尔文探针力显微镜测量表面电势的系统结构示意图;

图2是本发明提供的表面电势测试方法流程图;

图3是测量得到不同针尖与样品距离时的关系曲线Aω-Vac

图4是测量得到不同针尖与样品距离时的关系曲线A-Vac

具体实施方式

下面结合附图和实例对本发明进行进一步说明:

本实施例中,所用的导电探针弹性系数为2.18N/m,共振频率为75kHz。以测量绝缘体材料SrTiO3薄膜表面电势为例,按照图1所示测试系统连接仪器,通过图2所示流程图进行测量,具体测量步骤如下:

步骤1、将SrTiO3薄膜固定在位于扫描管上方的样品台上,调整开尔文探针力显微镜,令探针外加直流电压Vdc=0V,使开尔文探针力显微镜工作在双谐振模式;

步骤2、使探针与样品之间的交流电压Vac在0V~10V范围内按固定步长线性增加即1V、1.5V、2V、2.5V...7.5V、8V,测量过程中扫描管向探针方向移动,针尖与样品距离为Z;利用锁相放大器监测一倍频振幅Aω与二倍频振幅A,得到不同交流电压Vac下,一倍频振幅Aω、二倍频振幅A随针尖与样品距离Z改变的关系曲线;

步骤3、提取针尖与样品距离Z=0nm时,一倍频振幅Aω与交流电压Vac的关系曲线Aω-Vac、二倍频振幅A与交流电压Vac的关系曲线A-Vac

步骤4、若Aω-Vac关系曲线满足线性关系且A-Vac关系曲线满足抛物线关系,则转至步骤6,否则转至步骤5;

步骤5、令Z=Z+1nm,转至步骤4;

步骤6、输出针尖与样品距离Z的数值;

经过测试得到步骤6的输出值为100nm,此时Aω-Vac关系曲线满足线性关系且A-Vac关系曲线满足抛物线关系;在针尖与样品距离Z=10nm与Z=100nm时的Aω-Vac关系曲线对比图如图3所示,其A-Vac关系曲线对比图如图4所示。

步骤7、将针尖移动至SrTiO3薄膜待测位置,设置针尖与样品距离为的100nm,令探针外加交流电压Vac=2V,对样品进行扫描,利用锁相放大器监测探针的一倍频振幅Aω、二倍频振幅A以及相位信号,并输出到计算机;

步骤8、将计算机接收到的一倍频振幅Aω、二倍频振幅A以及相位信号代入公式计算得到样品表面电势,完成测量。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号