首页> 外文学位 >Harmonic force microscope: A new tool for biomolecular identification and material characterization based on nanomechanical measurements.
【24h】

Harmonic force microscope: A new tool for biomolecular identification and material characterization based on nanomechanical measurements.

机译:谐波力显微镜:一种基于纳米机械测量的生物分子识别和材料表征的新工具。

获取原文
获取原文并翻译 | 示例

摘要

At the molecular level, physical and chemical properties of materials are tightly coupled to the mechanical properties. The potential of mechanics for interacting with matter at the nanoscale has been largely unexplored due to lack of instruments capable of performing mechanical measurements at nanometer length scales.; This thesis describes nanomechanical sensing techniques and applications based on time-resolved tip-sample force measurements in tapping-mode atomic force microscopy. Tapping mode is the most successful operation mode of atomic force microscopes. Theoretical calculations presented in the first part of this thesis show that time variations of the tip-sample forces in the tapping-mode depend on the physical and chemical properties of the sample and therefore, have the potential to be used for nanomechanical measurements. Unfortunately, the force-sensing probe of the tapping-mode atomic force microscope, the vibrating cantilever, is limited in its response to the variations of forces in time within a period of oscillations. We are describing two types of special micromachined cantilevers that enable measurements of time variations of tip-sample forces: the harmonic cantilever and the coupled torsional cantilever. These special cantilevers allow sensitive mechanical measurements at the nanoscale and single molecular level. The operation of these cantilevers does not require any modifications to the existing atomic force microscopy systems.; With the nanomechanical sensing techniques we have developed, we investigated phase transformations of sub-micron domains of composite polymers and observed their glass transitions for the first time. Conventional measurements on bulk properties of these samples do not provide information on the physical changes at the nanoscale. Studies on nucleic acids attached to a surface, a configuration commonly used in DNA microarray technology, showed that the hybridized DNA molecules can be detected at the single molecule level with unprecedented sensitivity. Conventional techniques mainly use electrical or optical techniques and they are limited by their spatial resolution and sensitivity.; By providing data on chemistry and mechanics with high sensitivity and nanometer spatial resolution, time-resolved tip-sample force measurements in tapping-mode atomic force microscope has the potential to enable a new class of biological and chemical sensors and instruments for materials design and characterization.
机译:在分子水平上,材料的物理和化学性质与机械性质紧密相关。由于缺少能够在纳米级尺度上进行机械测量的仪器,因此在很大程度上尚未开发出与纳米级物质相互作用的力学潜力。本文介绍了在敲击模式原子力显微镜中基于时间分辨的尖端采样力测量的纳米机械感测技术及其应用。攻丝模式是原子力显微镜最成功的操作模式。本文第一部分提出的理论计算结果表明,攻丝模式下尖端样品力的时间变化取决于样品的物理和化学性质,因此具有用于纳米力学测量的潜力。不幸的是,敲击模式原子力显微镜的力感测探头,振动悬臂,其对振动周期内力随时间变化的响应受到限制。我们将描述两种类型的特殊微机械悬臂,它们能够测量尖端样本力的时间变化:谐波悬臂和耦合扭转悬臂。这些特殊的悬臂允许在纳米级和单分子水平进行灵敏的机械测量。这些悬臂的操作不需要对现有的原子力显微镜系统进行任何修改。利用我们开发的纳米机械传感技术,我们研究了复合聚合物亚微米域的相变,并首次观察到它们的玻璃化转变。这些样品的体积特性的常规测量无法提供有关纳米级物理变化的信息。对附着在表面上的核酸(DNA芯片技术中常用的一种配置)的研究表明,杂交的DNA分子可以以前所未有的灵敏度在单分子水平上进行检测。常规技术主要使用电学或光学技术,它们受到其空间分辨率和灵敏度的限制。通过提供具有高灵敏度和纳米级空间分辨率的化学和力学数据,轻敲式原子力显微镜中时间分辨的尖端采样力测量具有潜力,可以实现用于材料设计和表征的新型生化传感器和仪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号