首页> 中国专利> 一种基坑开挖引起邻近既有地铁隧道位移的计算方法

一种基坑开挖引起邻近既有地铁隧道位移的计算方法

摘要

本发明提供一种基坑开挖引起邻近既有地铁隧道位移的计算方法,具体包括如下步骤:先建立计算模型,进行坑底卸荷分析,再进行基坑侧壁卸荷分析,最后通过利用叠加原理,得到由基坑坑底和四周侧壁产生的卸荷应力,所引起的隧道外侧某一点(x1,y1,z1)的水平总位移Sx与竖向总位移Sz;为精确计算在基坑坑底荷载与四周侧壁荷载作用下所引起的隧道外侧位移,取朝向基坑侧的半侧隧道,均分若干个点,分别计算这若干个点的位移值,最后取平均位移值作为隧道位移值。因此施工前可通过本发明方法对具体工程的施工进行模拟,计算出指定工况下的地铁隧道位移大小,若隧道超过相应允许值,可调整相关施工参数进行试算,直至达到安全标准。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-06-25

    授权

    授权

  • 2017-02-15

    实质审查的生效 IPC(主分类):G06F17/50 申请日:20160829

    实质审查的生效

  • 2017-01-18

    公开

    公开

说明书

技术领域

本发明涉及一种基坑开挖引起邻近既有地铁隧道位移的计算方法,属于地下工程技术领域。

背景技术

(1)前人或考虑了四周坑壁应力释放作用。由于Mindlin解只适用于弹性半空间体,基坑开挖后,只能计算邻近隧道侧的坑壁应力所引起的位移;远离隧道一侧的坑壁应力由于不能通过土体(已挖除)传递,是无法计算的。因此从计算方法方面分析,考虑四周坑壁应力是有问题。

(2)或仅考虑邻近隧道一侧的坑壁应力。从理论上分析,只考虑一侧的坑壁应力,会导致隧道位移和影响范围的增加,因此也不合理。

(3)或均将基坑开挖产生的侧壁附加应力等效为三角形荷载,大小为:

K0γz

式中:K0为静止土压力系数;

γ为土的重度,单位符号为kN/m3

z为计算点离地面的竖向距离,单位符号为mm。

该方法没有考虑基坑围护结构的支撑作用,导致侧壁附加应力偏大。

(4)或均将基坑开挖产生的坑底土体应力释放等效为向上的矩形均布荷载,大小为:

Γd;

式中:d为基坑开挖深度,单位符号为mm。

该假设条件仅适用于基坑底部以下没有围护结构的工况。

而大多数基坑底部以下有围护结构,没有考虑基坑底部围护结构的遮拦效应,即基坑底部的等效荷载是无法直接作用到邻近隧道上的。

(5)或均将隧道结构视为弹性地基无限长梁,仅假设一侧有土体弹簧作用。

隧道在土体中受到四周围压作用,即上、下、左、右均应有土体弹簧,而不是仅一侧有。因此隧道并非产生整体水平移动,其表面位移均不相同,而现有方法无法计算隧道的水平向收敛值。

发明内容

随着城市地铁隧道的开发与利用,带动了沿线地区的房产建设,造成基坑越来越靠近地铁隧道。

基坑开挖卸荷引起的土体变形必然会带动隧道结构产生位移,过大位移会影响隧道结构的稳定,从而影响地铁列车的正常运营。

因此,对基坑开挖引起的邻近既有地铁隧道的位移预测具有重要意义。

本发明专利通过建立简化的基坑开挖力学计算模型,并考虑基坑围护结构的影响,采用Mindlin解,推导出基坑坑底与坑壁卸荷引起的邻近既有隧道位移的计算公式。

为了达到上述的目的,本发明采用了以下的技术方案:

提供一种基坑开挖引起邻近既有地铁隧道位移的计算方法,考虑到:

(1)基坑开挖时有围护结构保护(包括井壁和内支撑或外支撑),因此不会全部卸载;基坑开挖产生的侧壁等效附加应力计算公式是应乘以一个折减系数β,其中:β为基坑围护结构的应力损失率,等于最终释放的侧壁应力与初始侧壁应力的比值,β<1;

则等效荷载变为:βK0γz;

应考虑四个侧壁的共同作用,令四个侧壁的β值相同;

(2)由于盾构隧道刚度较大,靠近隧道侧的基坑土体应力释放引起的盾构隧道表面处的土体水平位移S1(朝向基坑侧),要远大于隧道水平位移S;

隧道的刚度作用,假设为有弹簧拉住了盾构隧道表面处的土体,或是对隧道表面处的土体施加了一个反向作用力,使其产生一个反向的位移S2(远离隧道侧);

两者叠加,最终结果是导致隧道水平位移影响范围和隧道最大水平位移值,均小于盾构隧道表面处的土体S1;

(3)本专利在计算基坑围护结构底部平面处土体的残余应力的同时,还考虑力在向下传递时围护结构侧壁的摩阻力影响;

(4)本专利将计算邻近基坑侧的半个隧道表面的位移值,具体分析隧道的位移变化,得到隧道的水平向收敛值;

具体包括如下步骤:

步骤1)、建立计算模型:(计算模型见图1)

基坑的四个侧壁的编号分别为①、②、③和④;

基坑长度L,单位符号为mm;

基坑宽度B,单位符号为mm;

离基坑中心点o的横向水平距离为x,以o点到侧壁①为正,单位符号为mm;

离o点的纵向水平距离为y,以o点到侧壁③为正,单位符号为mm;

基坑开挖面底部到基坑围护结构底面的距离d0,单位符号为mm;

开挖面与隧道的最小净距离s,单位符号为mm;

基坑围护结构深度H,H=d+d0,单位符号为mm;

地面到隧道底部的竖向距离h,单位符号为mm;

隧道外径D,单位符号为mm;

计算假定:

(1)土体为均质、弹性半空间体,隧道纵轴线方向平行于矩形基坑的长边;

(2)不考虑基坑开挖的时间和空间因素,不考虑降水;

(3)当基坑开挖到坑底时会导致土体应力释放,转化为在坑底平面处施加竖直向上的均布荷载γd;

(4)基坑四周侧壁在开挖后会产生应力释放,等效为在侧壁施加向坑内的三角形水平向分布荷载βK0γz;

(5)不考虑隧道存在对土体附加应力计算的影响;

(6)通过考虑远离隧道侧的基坑侧壁释放应力,来代替隧道刚度作用;

步骤2)、坑底卸荷分析:

由于基坑底部围护结构的保护作用,形成遮拦效应,故坑底释放的应力会受到围护结构产生的侧摩阻力影响,该侧摩阻力计算公式为:

qs=c+K0σztanφ;

式中:

qs为单位等效实体侧摩阻力,单位符号为Pa;

c为土的粘聚力,单位符号为Pa;

σz为基坑坑底到围护结构底的任意面处的土应力,单位符号为Pa;

φ为土的内摩擦角,单位符号为°;

根据实际工况,改为平均侧摩阻力计算公式为:

qs1=c+1/2(γd+γH)K0tanφ;

式中:

qs1平均单位侧摩阻力,单位符号为Pa;

如图2所示,则基坑围护结构底面水平平面处土体受到的等效荷载为:

式中:

σ为基坑围护结构底面水平平面处土体受到的等效荷载,单位符号为Pa;

α为残余应力系数;

由Mindlin竖向荷载的基本位移解,通过积分,在围护结构底面处水平面上某点(ξ,η)的单位力σdξdη作用下,引起的隧道外侧某点(x1,y1,z1)的水平位移与竖向位移>

式中:

ξ为围护结构底面处水平面上某点横坐标,单位符号为mm;

η为围护结构底面处水平面上某点纵坐标,单位符号为mm;

μ为土的泊松比;

G为土的剪切弹性模量,单位符号为Pa;

Es为土的压缩模量,单位符号为Pa;

步骤3)、基坑侧壁卸荷分析:

由Mindlin水平荷载的基本位移解,通过积分,在编号为①的基坑侧壁三角形分布荷载中某点(η,τ)的单位力βK0γdηdτ作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

τ为编号①的基坑侧壁三角形分布荷载中某点的纵坐标,单位符号为mm;

在编号为②的基坑侧壁三角形分布荷载作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

在编号为③的基坑侧壁三角形分布荷载τ作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

在编号为④的基坑侧壁三角形分布荷载作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

步骤4)、总的计算公式:

利用叠加原理,得到由基坑坑底和四周侧壁产生的卸荷应力,所引起的隧道外侧某一点(x1,y1,z1)的水平总位移Sx与竖向总位移Sz分别为:

为精确计算在基坑坑底荷载与四周侧壁荷载作用下所引起的隧道外侧位移,取朝向基坑侧的半侧隧道,均分若干个点,分别计算这若干个点的位移值,最后取平均位移值作为隧道位移值。

本专利的理论基础扎实,研究了基坑开挖引起邻近既有地铁隧道位移计算公式。

施工前可根据具体的现场施工参数,如静止土压力系数K0、土的重度γ、基坑开挖深度d、基坑长度L、基坑宽度B,基坑开挖面底部到基坑围护结构底面的距离d0、开挖面与隧道的最小净距离s,基坑围护结构深度H,地面到隧道底部的竖向距离h,隧道外径D,土的粘聚力c,土的内摩擦角残余应力系数α、土的泊松比μ、为土的压缩模量Es,模拟不同参数的施工条件下,基坑开挖可能对邻近既有地铁隧道产生的位移大小。

在实际情况中,工程施工对隧道位移大小有严格控制,若隧道位移超过相应允许值,则存在工程安全隐患,甚至造成地表塌陷、周边建筑物倾斜、地下管线破坏等严重后果。

因此施工前可通过本专利的公式对具体工程的施工进行模拟,计算出指定工况下的地铁隧道位移大小,若隧道超过相应允许值,可调整相关施工参数进行试算,直至达到安全标准。

本专利通过理论公式,对实际基坑开挖引起邻近既有地铁隧道位移大小进行预测,对工程具有预防、指导作用,并且为今后有关基坑开挖对邻近隧道影响方面的研究提供了理论基础。

附图说明

图1是本发明中的计算模型的前视图;

图2是本发明中的计算模型的右视图;

图3是本发明中的计算模型的俯视图;

图4是本发明中的计算模型中基坑围护结构底面处的荷载示意图;

图5是本发明中的计算模型中四个侧壁卸荷引起的隧道水平位移变化曲线示意图;

图6是本发明中隧道长度与基坑开挖长度的对比示意图。

具体实施方式

下面结合附图对本发明的具体实施方式做一个详细的说明。

如图1~6所示,本发明提供一种基坑开挖引起邻近既有地铁隧道位移的计算方法的具体实施例,由于考虑到:

(1)基坑开挖时有围护结构保护(包括井壁和内支撑或外支撑),因此不会全部卸载;基坑开挖产生的侧壁等效附加应力计算公式是应乘以一个折减系数β,其中:β为基坑围护结构的应力损失率,等于最终释放的侧壁应力与初始侧壁应力的比值,β<1;

则等效荷载变为:βK0γz;

应考虑四个侧壁的共同作用,令四个侧壁的β值相同;

(3)由于盾构隧道刚度较大,靠近隧道侧的基坑土体应力释放引起的盾构隧道表面处的土体水平位移S1(朝向基坑侧),要远大于隧道水平位移S;

隧道的刚度作用,假设为有弹簧拉住了盾构隧道表面处的土体,或是对隧道表面处的土体施加了一个反向作用力,使其产生一个反向的位移S2(远离隧道侧);

两者叠加,最终结果是导致隧道水平位移影响范围和隧道最大水平位移值,均小于盾构隧道表面处的土体S1;

(3)本专利在计算基坑围护结构底部平面处土体的残余应力的同时,还考虑力在向下传递时围护结构侧壁的摩阻力影响;

(4)本专利将计算邻近基坑侧的半个隧道表面的位移值,具体分析隧道的位移变化,得到隧道的水平向收敛值;

具体包括如下步骤:

步骤1)、建立计算模型:(计算模型参见图1~3)

令基坑的四个侧壁的编号分别为①、②、③和④;

基坑长度L,单位符号为mm;

基坑宽度B,单位符号为mm;

离基坑中心点o的横向水平距离为x,以o点到侧壁①为正,单位符号为mm;

离o点的纵向水平距离为y,以o点到侧壁③为正,单位符号为mm;

基坑开挖面底部到基坑围护结构底面的距离d0,单位符号为mm;

开挖面与隧道的最小净距离s,单位符号为mm;

基坑围护结构深度H,H=d+d0,单位符号为mm;

地面到隧道底部的竖向距离h,单位符号为mm;

隧道外径D,单位符号为mm;

计算假定:

(7)土体为均质、弹性半空间体,隧道纵轴线方向平行于矩形基坑的长边;

(8)不考虑基坑开挖的时间和空间因素,不考虑降水;

(9)当基坑开挖到坑底时会导致土体应力释放,转化为在坑底平面处施加竖直向上的均布荷载γd;

(10)基坑四周侧壁在开挖后会产生应力释放,等效为在侧壁施加向坑内的三角形水平向分布荷载βK0γz;

(11)不考虑隧道存在对土体附加应力计算的影响;

(12)通过考虑远离隧道侧的基坑侧壁释放应力,来代替隧道刚度作用;

步骤2)、坑底卸荷分析:

由于基坑底部围护结构的保护作用,形成遮拦效应,故坑底释放的应力会受到围护结构产生的侧摩阻力影响,该侧摩阻力计算公式为:

qs=c+K0σztanφ;

式中:

qs为单位等效实体侧摩阻力,单位符号为Pa;

c为土的粘聚力,单位符号为Pa;

σz为基坑坑底到围护结构底的任意面处的土应力,单位符号为Pa;

φ为土的内摩擦角,单位符号为°;

根据实际工况,改为平均侧摩阻力计算公式为:

qs1=c+1/2(γd+γH)K0tanφ;

式中:

qs1平均单位侧摩阻力,单位符号为Pa;

如图4所示,则基坑围护结构底面水平平面处土体受到的等效荷载为:

式中:

σ为基坑围护结构底面水平平面处土体受到的等效荷载,单位符号为Pa;

α为残余应力系数;

由Mindlin竖向荷载的基本位移解,通过积分,在围护结构底面处水平面上某点(ξ,η)的单位力σdξdη作用下,引起的隧道外侧某点(x1,y1,z1)的水平位移与竖向位移>

式中:

ξ为围护结构底面处水平面上某点横坐标,单位符号为mm;

η为围护结构底面处水平面上某点纵坐标,单位符号为mm;

μ为土的泊松比;

G为土的剪切弹性模量,单位符号为Pa;

Es为土的压缩模量,单位符号为Pa;

步骤3)、基坑侧壁卸荷分析:

由Mindlin水平荷载的基本位移解,通过积分,在编号为①的基坑侧壁三角形分布荷载中某点(η,τ)的单位力βK0γdηdτ作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

τ为编号①的基坑侧壁三角形分布荷载中某点的纵坐标,单位符号为mm;

在编号为②的基坑侧壁三角形分布荷载作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

在编号为③的基坑侧壁三角形分布荷载τ作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

在编号为④的基坑侧壁三角形分布荷载作用下,引起隧道外侧某一点(x1,y1,z1)的水平位移与竖向位移分别为:

式中:

步骤4)、总的计算公式:

利用叠加原理,得到由基坑坑底和四周侧壁产生的卸荷应力,所引起的隧道外侧某一点(x1,y1,z1)的水平总位移Sx与竖向总位移Sz分别为:

为精确计算在基坑坑底荷载与四周侧壁荷载作用下所引起的隧道外侧位移,取朝向基坑侧的半侧隧道,均分若干个点,分别计算这若干个点的位移值,最后取平均位移值作为隧道位移值。

本专利的理论基础扎实,研究了基坑开挖引起邻近既有地铁隧道位移计算公式。

施工前可根据具体的现场施工参数,如静止土压力系数K0、土的重度γ、基坑开挖深度d、基坑长度L、基坑宽度B,基坑开挖面底部到基坑围护结构底面的距离d0、开挖面与隧道的最小净距离s,基坑围护结构深度H,地面到隧道底部的竖向距离h,隧道外径D,土的粘聚力c,土的内摩擦角残余应力系数α、土的泊松比μ、为土的压缩模量Es,模拟不同参数的施工条件下,基坑开挖可能对邻近既有地铁隧道产生的位移大小。

在实际情况中,工程施工对隧道位移大小有严格控制,若隧道位移超过相应允许值,则存在工程安全隐患,甚至造成地表塌陷、周边建筑物倾斜、地下管线破坏等严重后果。

因此施工前可通过本专利的公式对具体工程的施工进行模拟,计算出指定工况下的地铁隧道位移大小,若隧道超过相应允许值,可调整相关施工参数进行试算,直至达到安全标准。

本专利通过理论公式,对实际基坑开挖引起邻近既有地铁隧道位移大小进行预测,对工程具有预防、指导作用,并且为今后有关基坑开挖对邻近隧道影响方面的研究提供了理论基础。

其中:Mindlin水平荷载的基本位移解:

式中:S为土体位移,单位符号为mm;

P为作用在l深度处的水平集中力,单位符号为N;

l为计算点距地表的距离,单位符号为mm;

M为荷载作用点作用点到土体沉降计算点之间的距离,单位符号为mm;

N为荷载作用点关于地面的对称点到土体沉降计算点之间的距离,单位符号为mm。

Mindlin竖向荷载的基本位移解:

由于标准工况计算参数:假定某基坑平面开挖尺寸长L=20m,宽B=10m,开挖深度d=15m,基坑围护结构深度H=27m。地铁隧道外径D=6.2m,隧道底部深度h=15m,基坑开挖面与隧道最小净距离为s=5m。土的重度γ=18.5kN/m3,静止土压力系数K0=0.53,土的压缩模量Es=10MPa,土的泊松比μ=0.35,土的粘聚力c=12kPa,土的内摩擦角基坑围护结构的应力损失率β=25%。

计算结果表明,该标况下围护结构底部平面处的土体附加竖向荷载为0。由于竖向荷载需考虑的因素复杂,易受基坑围护深度、降水等影响,所以本专利将重点分析基坑开挖引起的旁边既有隧道的水平位移变化。

如图5所示,四个侧壁卸荷所引起的隧道位移变化不一样,侧壁①卸荷应力促使隧道向基坑侧靠近,侧壁②则与①相反,能减小隧道变形,说明在加固时需对侧壁①引起重视。侧壁③与④的卸荷应力对隧道位移的影响小,且呈不规则变化。

将本专利方法计算得到的隧道水平位移值,与隧道水平位移实测值和有限元模拟结果作无量纲对比分析,结果见图6。如图所示:(1)本文方法(考虑四个侧壁)计算值与实测和有限元模拟结果非常吻合,表明本文提出的半解析半经验解具有一定可靠性。若本文仅考虑侧壁①,显然与实测和有限元的无量纲曲线有很大出入,影响范围明显偏大;(2)隧道水平位移曲线基本呈正态分布,隧道水平位移的影响范围约为基坑沿隧道纵向开挖长度L的2~3倍。本文标况下的影响范围约为2L(即±L),与实测和有限元模拟结果的影响范围吻合。

另外图6中参考文献【1】~【7】作如下简单说明:

[1]上海市市政工程管理局.上海市地铁沿线建筑施工保护地铁技术管理暂行规定[S].上海:上海市政管理局,1994.

Shanghai Road Administration Bureau.The provisional rules of subway technical management about protecting the building-construction along the subway lines in Shanghai[S].Shanghai:Shanghai Municipal Management Bureau,1994.

[2]况龙川.深基坑施工对地铁隧道的影响[J].岩土工程学报,2000,22(3):284-288.

KUANG Long-chuan.Influence of construction of deep foundation pit on tunnels of metro[J].Chinese Journal of Geotechnical

Engineering,2000,22(3):284-288.

[3]邵华,王蓉.基坑开挖施工对邻近地铁影响的实测分析[J].地下空间与工程学报,2011,7(增刊1):1403-1408.

SHAO Hua,WANG Rong.Monitoring data analysis on influence of operating metro tunnel by nearly excavation construction[J].Chinese Journal of Underground Space and Engineering,2011,7(Supp.1):1403-1408.

[4]高广运,高盟,杨成斌,等.基坑施工对运营地铁隧道的变形影响及控制研究[J].岩土工程学报,2010,32(3):453-459.

GAO Guang-yun,GAO Meng,YANG Cheng-bin,et al.Influence of deep excavation on deformation of operating metro tunnels and countermeasures[J].Chinese Journal of Geotechnical Engineering,2010,32(3):453-459.

[5]周建昆,李志宏.紧邻隧道基坑工程对隧道变形影响的数值分析[J].地下空间与工程学报,2010,6(增刊1):1398-1403.

ZHOU Jian-kun,LI Zhi-hong.Numerical Analysis on deformation effect of metro tunnels due to adjacent excavation project[J].Chinese Journal of Underground Space and Engineering,2010,6(Supp.1):1398-1403.

[6]邹家南,杨小平,刘庭金.邻近地铁盾构隧道的深基坑支护分析[J].铁道建筑,2013,(9):63-67.

ZOU Jia-nan,YANG Xiao-ping,LIU Ting-jin.Analysis on retaining structure of the deep excavation adjacent to metro tunnels[J].Railway Engineering,2013,(9):63-67.

[7]郭典塔,周翠英,朱远辉.基坑开挖对近接地铁隧道的影响规律研究[J].广东土木与建筑,2014,(6):16-19.

Guo Dian-ta,Zhou Cui-ying,Zhu Yuan-hui.Study on effect of metro tunnel mechanic behaviors due to adjacent excavation[J].

Guangdong Architecture Civil Engineering,2014,(6):16-19。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号