首页> 中国专利> 电子束诱导二次谐波的超分辨显微系统及测试方法

电子束诱导二次谐波的超分辨显微系统及测试方法

摘要

电子束诱导二次谐波的超分辨显微系统及测试方法,其中,至少设有真空腔室,所述真空腔室的两侧分别设置有入光窗口和出光窗口;该系统还包括激光器、第一反射镜、第二反射镜、基频滤光镜和探测器,所述激光器与第一反射镜位于所述入光窗口一侧,所述第二反射镜、基频滤光镜与探测器位于所述出光窗口一侧;所述真空腔室内部设置有扫描电子显微镜、扫描样品台、样品。本发明提供的电子束诱导二次谐波的超分辨显微系统及测试方法,在纳米分辨率内得到样品材料的载流子成像分布,可同时与样品的形貌特征进行对比,在同一测试环境中一次性实现,无需对样品进行移动,得出载流子的产生、分离和输运的时间分辨特性。

著录项

  • 公开/公告号CN105675639A

    专利类型发明专利

  • 公开/公告日2016-06-15

    原文格式PDF

  • 申请/专利号CN201410663318.8

  • 发明设计人 张跃钢;倪卫海;蔺洪振;

    申请日2014-11-19

  • 分类号G01N23/22(20060101);

  • 代理机构44304 深圳市铭粤知识产权代理有限公司;

  • 代理人孙伟峰;杨林

  • 地址 215123 江苏省苏州市苏州工业园区若水路398号

  • 入库时间 2023-12-18 15:32:47

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-25

    授权

    授权

  • 2016-07-13

    实质审查的生效 IPC(主分类):G01N23/22 申请日:20141119

    实质审查的生效

  • 2016-06-15

    公开

    公开

说明书

技术领域

本发明涉及光学测试系统领域,尤其涉及扫描电子束诱导二次谐波的光学 超分辨显微系统。

背景技术

当今社会,纳米技术逐渐成为科技发展的重要角色。纳米技术的研究热点 已经不再停留于纳米材料的制备和性质研究,而是转向于基于纳米材料的各类 器件的研究和应用。纳米材料和纳米器件的广泛应用对于人类未来的发展有着 非常深远的影响。纳米器件是多种纳米材料构成的功能整体,各材料组分之间 存在复杂的相互作用,这些相互作用往往发生在微观尺度上,要想深入认识器 件的工作原理进而找到改善其性能的途径,依靠传统的宏观表征手段是远远不 够的,必须在微观尺度上研究纳米器件在工作过程中的动力学特性。因此,研 究具有高空间分辨率的光学成像表征及超快时间分辨表征技术,显得尤为必要。

发明内容

本发明提供的电子束诱导二次谐波的超分辨显微系统及测试方法,解决了 载流子光学表征特性分辨率不足的问题,开发一套对载流子产生、分离和输运 特性进行超分辨和超快表征的扫描电子束诱导二次谐波光学显微系统,其发明 内容如下:

电子束诱导二次谐波的超分辨显微系统,其中,至少设有真空腔室,所述 真空腔室的两侧分别设置有入光窗口和出光窗口;该系统还包括激光器、第一 反射镜、第二反射镜、基频滤光镜和探测器,所述激光器与第一反射镜位于所 述入光窗口一侧,所述第二反射镜、基频滤光镜与探测器位于所述出光窗口一 侧;所述真空腔室内部设置有扫描电子显微镜、扫描样品台、样品。

进一步地,所述扫描电子显微镜至少设有电子光学系统、电子束斩波系统 和物镜;电子束斩波系统用于产生电子束脉冲,电子光学系统用于控制电子束 脉冲,电子束斩波系统设置有用于调整电子束脉冲脉宽的小孔光阑,物镜用于 聚焦电子束脉冲。

优选地,脉宽在1ps至10ns范围内。

进一步地,所述激光器设置有用于发射飞秒激光脉冲的钛蓝石飞秒激光。

进一步地,所述第一反射镜与第二反射镜设有电动调整架,用于调整反射 角度。

进一步地,所述扫描样品台包括精密压电载物台和粗调电控载物台,所述 精密压电载物台位于粗调电控载物台的上方。

进一步地,所述精密压电载物台的移动精度在纳米范围内,用于精确扫描, 所述粗调电控载物台的移动精度在微米范围内,用于初始定位。

进一步地,探测器为光电倍增管,内部设有锁相放大器,用于处理光电倍 增管中的信号。

测试方法,其中,包括以下步骤:

(1)将样品放置于真空腔室的扫描样品台上,进行扫描之后,得到样品的 形貌特征;

(2)样品表面设置有两个电极,位于样品的两端;

(3)扫描电子显微镜产生电子束脉冲照射样品,分离样品的电子与空穴, 形成回路产生电流;

(4)激光器发射飞秒激光脉冲,经第一反射镜反射后,通过入光窗口进入 真空腔室,射入到样品上的同一区域,产生二次谐波脉冲信号,从而产生样品 材料的载流子;

(5)利用了电子束脉冲诱导产生的电流产生二次谐波脉冲信号,对载流子 进行光学数据采集,得到样品材料的空间分辨特征;

(6)二次谐波脉冲信号经第二反射镜反射后,经过基频滤光镜,过滤掉基 频光后,射入探测器,被探测器收集,得到样品的载流子成像分布;

(7)分析样品的形貌特征和载流子的分布特征,得出载流子的产生、分离 和输运的时间分辨特性。

进一步地,所述扫描样品台、扫描电子显微镜和激光器均由计算机控制系 统调控,用于控制电子束脉冲与飞秒激光脉冲的射入时间。

本发明的有益效果:

本发明提供的电子束诱导二次谐波的超分辨显微系统,是一种非接触、无 损伤、无侵入的测试手段,突破衍射极限的超分辨成像能力、实现超快时间分 辨的动力学检测。在纳米分辨率内得到样品材料的载流子成像分布,可同时与 样品的形貌特征进行对比,在同一测试环境中一次性实现,无需对样品进行移 动,得出载流子的产生、分离和输运的时间分辨特性。

附图说明

图1为本发明实施例电子束诱导二次谐波的超分辨显微系统的示意图。

具体实施方式

为了更好地阐述本发明的技术特点和结构,以下结合本发明的优选实施例 及其附图进行详细描述。

实施例1

参阅图1,电子束诱导二次谐波的超分辨显微系统,其中,至少设有真空腔 室100,真空腔室100的两侧分别设置有入光窗口110和出光窗口120,入光窗 口110与出光窗口120均为密封材质,以保证真空腔室100内的真空度;该系 统还包括激光器300、第一反射镜130、第二反射镜140、基频滤光镜150和探 测器400,激光器300与第一反射镜130位于所述入光窗口110一侧,第二反射 镜140、基频滤光镜150与探测器400位于所述出光窗口120一侧;所述真空腔 室100内部设置有扫描电子显微镜200、扫描样品台500、样品510。样品510 可为PN结器件或半导体。

扫描电子显微镜200至少设有电子光学系统210、电子束斩波系统220和物 镜230,其中,电子束斩波系统220设置有用于调整电子束脉冲240脉宽的小孔 光阑。扫描电子显微镜200工作时,电子束斩波系统220产生电子束脉冲240, 通过电子光学系统210进行聚焦,经过小孔光阑调整脉宽,脉宽在1ps至10ns 范围内,最后通过物镜230聚焦电子束脉冲240照射于样品上。需要说明的是, 电子光学系统210可以控制电子束脉冲240的能量、束斑大小和照射时间。

激光器300设置有用于发射飞秒激光脉冲320的钛蓝石飞秒激光,其中, 飞秒激光脉冲320在1kHz重复频率的波长为810mm,脉宽为130fs,光斑在十 微米范围内。需要说明的是,激光器300可结合光学参量振荡器,根据样品类 型,产生波长可调谐的激光脉冲,以适应不同的基频光波长;激光器300还可 增加偏振元件来改变其偏振状态,以满足二次谐波产生的要求。

激光器300产生的飞秒激光脉冲320经过第一反射镜130进入真空腔室100, 从而射于样品上,第一反射镜130设有电动调整架,用于调整反射角度,保证 反射后的飞秒激光脉冲320射于样品的位置与电子束脉冲240的照射位置相同。 同时,飞秒激光脉冲320射于样品后产生二次谐波脉冲信号410,二次谐波脉冲 信号410通过第二反射镜140射出,经过基频滤光镜150进入探测器400,其中, 第二反射镜140也设有电动调整架,探测器400为光电倍增管,内部设有锁相 放大器,用于处理光电倍增管中的信号,保证信噪比。

扫描样品台500包括精密压电载物台520和粗调电控载物台530,所述精密 压电载物台520位于粗调电控载物台530的上方,精密压电载物台520的移动 精度在纳米范围内,用于精确扫描,粗调电控载物台530的移动精度在微米范 围内,用于初始扫描。

实施例2

参阅图1,测试方法,包括以下步骤:

(1)将样品放置于真空腔室100的扫描样品台500上,进行扫描之后,得 到样品510的形貌特征;

(2)样品510表面设置有两个电极511,位于样品510的两端;

(3)扫描电子显微镜200产生电子束脉冲240照射样品510,分离样品510 的电子与空穴,形成回路产生电流;

(4)激光器300发射飞秒激光脉冲320,经第一反射镜130反射后,通过 入光窗口110进入真空腔室100,射入到样品510上的同一区域,产生二次谐波 脉冲信号410,从而产生样品材料的载流子;

(5)利用了电子束脉冲240诱导产生的电流产生二次谐波脉冲信号410, 对载流子进行光学数据采集,得到样品材料的空间分辨特征;

(6)二次谐波脉冲信号410经第二反射镜140反射后,经过基频滤光镜150, 过滤掉基频光后,射入探测器400,被探测器400收集,在扫描样品台500的过 程中,得到样品510的载流子成像分布;

(7)分析样品510的形貌特征和载流子的分布特征,得出载流子的产生、 分离和输运的时间分辨特性。

在此过程中,通过电子束脉冲的方法完成样品的泵浦探测,外设延时线或 者时间控制算法来精确控制泵浦脉冲与探测脉冲的间隔时间,采用延迟方法控 制电子束和光束脉冲到达样品时间,以实现时间分辨能力,得到样品的载流子 迁移率变化、激子产生、分离的动力学过程。

需要说明的是,扫描样品台500、扫描电子显微镜200和激光器300均由计 算机控制系统调控,样品在扫描样品台500扫描的过程中,电子束脉冲240与 飞秒激光脉冲320照射在样品510的位置相同,且保持不变,计算机控制系统 可调节电子束脉冲240在样品表面510的位置和焦距,使光学数据采集和扫描 样品台500保持同步。计算机控制系统设置有时间控制模块,控制电子束脉冲 240与飞秒激光脉冲320的射入时间,飞秒激光脉冲320到达样品510后控制不 同延时,进行电子束脉冲240的照射,实现时间分辨能力。同时,由于电子束 脉冲240的光斑较小,与样品材料相互作用的范围小,从而得到的分辨率较高。

需要说明的是,本实施例的附图均采用非常简化的形式且均使用非精准的 比率,仅用于方便、明晰地辅助说明本发明实施例的目的。

本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对 本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的 基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施 方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改 进等,均应包含在本发明权利要求的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号