首页> 中国专利> 铁氧体颗粒及使用其的电子照相显影用载体、电子照相用显影剂以及铁氧体颗粒的制造方法

铁氧体颗粒及使用其的电子照相显影用载体、电子照相用显影剂以及铁氧体颗粒的制造方法

摘要

本发明的铁氧体颗粒的特征在于,其是将Mn铁氧体作为主相且含有Sr铁氧体的铁氧体颗粒,颗粒表面的凹凸度为2.5μm~4.5μm的范围,显露在颗粒表面的晶粒的大小的标准偏差为1.5μm~3.5μm的范围。由此,覆盖树脂随着长期使用仍残留在颗粒表面,能够抑制带电特性的降低。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-04-05

    授权

    授权

  • 2015-12-16

    实质审查的生效 IPC(主分类):C01G49/00 申请日:20140226

    实质审查的生效

  • 2015-11-18

    公开

    公开

说明书

技术领域

本发明涉及表面为凹凸形状、具有规定的磁特性的铁氧体颗粒及使用其 的电子照相显影用载体(以下,有时简称为“载体”)、电子照相用显影剂(以 下,有时简称为“显影剂”)以及铁氧体颗粒的制造方法。

背景技术

例如,在使用电子照相方式的传真机、打印机、复印机等图像形成设备 中,使调色剂附着于感光体的表面上形成的静电潜像,进行可视图像化,将 该可视图像转印到纸张等后,进行加热/加压来进行定影。从高画质化、色彩 化的观点出发,作为显影剂,广泛使用了包含载体和调色剂的所谓的双组分 显影剂。

在使用双组分显影剂的显影方式中,在显影设备内搅拌混合载体和调色 剂,利用摩擦使调色剂带电至规定量。然后,向旋转的显影辊供给显影剂, 在显影辊上形成磁刷,介由磁刷使调色剂向感光体电移动,使感光体上的静 电潜像可视图像化。调色剂移动后的载体残留在显影辊上,在显影设备内再 次与调色剂混合。因此,作为载体的特性,要求用于形成磁刷的磁特性、向 调色剂赋予所需的电荷的带电特性以及反复使用时的耐久性。

因此,目前为止较多地使用用树脂覆盖磁铁矿、各种铁氧体等磁性颗粒 的表面的所谓的涂层载体。然而,颗粒表面的覆盖树脂层由于在显影设备内 的长期的搅拌等而磨损。若颗粒表面的覆盖树脂层整体磨损,则载体的带电 特性降低,产生调色剂的带电不良,图像质量下降。

专利文献1提出了为了提高与覆盖树脂层的粘接强度,对于特定组成的 铁氧体颗粒,在晶粒(結晶粒)的表面形成微小的凹凸。另外,专利文献2 提出了在铁氧体颗粒的表面形成细条状褶纹的凹凸。

现有技术文献

专利文献

专利文献1:日本特开平10-104884号公报(权利要求书和(0029)段等)

专利文献2:WO2007/63933号公报

发明内容

发明要解决的问题

专利文献1提出的铁氧体颗粒中,在晶粒的表面形成的凹凸的优选的深 度为0.5μm以下,另外,专利文献2提出的铁氧体颗粒中,颗粒表面的凹凸也 为褶纹,因此认为随着长期使用,颗粒表面的覆盖树脂层整体均等地磨损。 因此,不能充分地抑制载体的带电特性的降低。

本发明是鉴于这样的现有问题而做出的,其目的在于,提供一种覆盖树 脂随着长期使用仍部分地残留在颗粒表面,能够抑制带电特性的降低的铁氧 体颗粒。

另外,本发明的目的在于,提供一种稳定地维持带电性能的电子照相显 影用载体和电子照相用显影剂。

进而,本发明的目的在于,提供一种高效地制造颗粒表面的凹凸度为特 定范围、显露在颗粒表面的晶粒(グレイン)的大小的波动为规定范围的铁 氧体颗粒的方法。

用于解决问题的方案

用于实现前述目的的本发明的铁氧体颗粒是将Mn铁氧体作为主相且含 有Sr铁氧体的铁氧体颗粒,颗粒表面的凹凸度为2.5μm~4.5μm的范围,显露 在颗粒表面的晶粒的大小的标准偏差为1.5μm~3.5μm的范围。

需要说明的是,本说明书中“凹凸度”和“标准偏差”是根据实施例中 所示测定方法测定的值。

另外,根据本发明,提供一种电子照相显影用载体,其特征在于,前述 铁氧体颗粒的表面被树脂覆盖。

进而,根据本发明,提供一种电子照相用显影剂,其包含前述电子照相 显影用载体和调色剂。

另外,根据本发明,提供一种铁氧体颗粒的制造方法,其特征在于,其 具有:将Fe成分原料、Mn成分原料、体积平均粒径(以下,有时简称为“平 均粒径”)为1.0μm~4.5μm的Sr铁氧体颗粒投入到分散剂中而得到浆料的工 序;对前述浆料进行喷雾干燥而得到造粒物的工序;以及对前述造粒物进行 焙烧而得到焙烧物的工序。

另外,Sr铁氧体颗粒的添加量优选为2.5wt%~15wt%的范围。

发明的效果

对于本发明的铁氧体颗粒,覆盖树脂随着长期使用仍部分地残留在颗粒 表面,能够抑制带电特性的降低。

本发明的电子照相显影用载体和电子照相用显影剂能够稳定地维持带 电性能。

本发明的制造方法能够高效地制造颗粒表面的凹凸度为特定范围、显露 在颗粒表面的晶粒的大小的波动为规定范围的铁氧体颗粒。

附图说明

图1是实施例1的铁氧体颗粒的SEM照片。

图2是示出Sr铁氧体颗粒的平均粒径和铁氧体颗粒表面的凹凸度的关系 的图。

图3是示出Sr铁氧体颗粒的平均粒径和铁氧体颗粒表面的晶粒的大小的 标准偏差σ的关系的图。

图4是说明铁氧体颗粒表面的晶粒的大小的标准偏差σ的计算方法的图。

具体实施方式

首先,对本发明的铁氧体颗粒进行说明。本发明的铁氧体颗粒的一大特 征在于,颗粒表面的凹凸度为2.5μm~4.5μm的范围。由此,铁氧体颗粒表面 被树脂覆盖时,凹部的覆盖树脂随着长期使用也不会磨损,因此能够抑制带 电特性的降低。颗粒表面的凹凸度小于2.5μm时,覆盖树脂整体均匀地磨损, 另一方面,颗粒表面的凹凸度大于4.5μm时,铁氧体颗粒的流动性极度恶化, 将铁氧体颗粒用作载体芯材时,调色剂的带电特性降低。颗粒表面的凹凸度 的更优选的范围为3.1μm~4.5μm的范围。

另外,本发明的铁氧体颗粒的另外一大特征在于,显露在颗粒表面的晶 粒的大小的标准偏差为1.5μm~3.5μm的范围。如此,通过晶粒的大小某种程 度地波动并结合前述颗粒表面的凹凸度,能够防止颗粒表面被树脂覆盖情况 下的、铁氧体颗粒表面的覆盖树脂的均匀的磨损,覆盖树脂残留在凹部,能 够抑制带电特性的降低。

为了使铁氧体颗粒的颗粒表面的凹凸度和晶粒的大小的标准偏差为前 述范围,如后述那样,重要的是使用Sr铁氧体颗粒作为铁氧体颗粒的原料, 并且调整Sr铁氧体颗粒的平均粒径。图2示出Sr铁氧体颗粒的平均粒径和铁氧 体颗粒表面的凹凸度的关系。另外,图3示出Sr铁氧体颗粒的平均粒径和显 露在铁氧体颗粒表面的晶粒的大小的标准偏差的关系。

由图2可知,用作原料的Sr铁氧体颗粒的平均粒径与铁氧体颗粒表面的 凹凸度大致成比例关系,增大作为原料的Sr铁氧体颗粒的平均粒径时,所得 铁氧体颗粒的表面的凹凸度变大。另外,由图3可知,用作原料的Sr铁氧体 颗粒的平均粒径与显露在铁氧体颗粒表面的晶粒的大小的标准偏差也大致 成比例关系,增大作为原料的Sr铁氧体颗粒的平均粒径时,显露在铁氧体颗 粒表面的晶粒的大小的标准偏差也变大。

如此,推测通过将Sr铁氧体用作原料而使所得铁氧体颗粒的表面的凹凸 度以及显露在铁氧体颗粒表面的晶粒的标准偏差变大是由于,作为原料的Sr 铁氧体作为晶种促进纵向晶体生长,其结果,所得铁氧体颗粒的表面的凹凸 度以及显露在铁氧体颗粒表面的晶粒的波动变大。

用作原料的Sr铁氧体颗粒的平均粒径为1.0μm~4.5μm的范围。更优选为 1.0μm~3.5μm的范围。将Sr铁氧体颗粒的平均粒径设定为该范围,由此所得 铁氧体颗粒表面的凹凸度以及晶粒的大小的标准偏差容易处于本发明的规 定范围。

需要说明的是,本发明的铁氧体颗粒将Mn铁氧体作为主相,因此容易 得到所需的磁特性和电阻。

本发明的铁氧体颗粒的体积平均粒径优选为10μm~100μm的范围。通过 使体积平均粒径为10μm以上,能够确实地赋予各个颗粒所需的磁力,例如, 将铁氧体颗粒用作电子照相显影用载体时,变得能够抑制载体附着于感光 体。另一方面,使体积平均粒径为100μm以下,由此变得能够良好地保持图 像特性。为了将铁氧体颗粒的平均粒径设定为上述范围,在铁氧体颗粒的制 造工序中或者制造工序后,使用筛等进行分级处理即可。另外,优选的是粒 径分布窄。

本发明的铁氧体颗粒的表观密度优选为2.5g/cm3以下。通过使表观密度 为2.5g/cm3以下,由此例如将铁氧体颗粒用作载体芯材时,可以实现减轻包 含载体的显影剂的搅拌动力。

本发明的铁氧体颗粒的、外部磁场79.58×103A/m(1000奥斯特)下的 磁化σ1k优选为50A·m2/kg~60A·m2/kg的范围。通过使铁氧体颗粒的磁化σ1k处 于该范围,由此例如将铁氧体颗粒用作载体芯材时,能够充分地确保磁刷的 矫顽力,能够抑制载体附着于感光体的现象。

本发明的铁氧体颗粒能够用于各种用途,例如可以用作电子照相显影用 载体;电磁波吸收材料、电磁波屏蔽材料用材料粉末;橡胶、塑料用填充材 料/增强材料;油漆、颜料/粘接剂用消光材料、填充材料、增强材料等。其 中,尤其适用于电子照相显影用载体。

对本发明的铁氧体颗粒的制造方法没有特别限制,但优选以下将要说明 的制造方法。

首先,称量Fe原料、Mn原料和Sr铁氧体颗粒,投入到分散剂中进行混 合,制作浆料。作为Fe原料,可以使用Fe2O3粉、Fe氧化物、Fe氢氧化物等, 作为Mn原料,可以使用MnFe2O4预烧粉末、Mn氧化物、Mn氢氧化物等,作 为Sr铁氧体颗粒,可以使用SrO·nFe2O3(n=0.5~6.5),更优选使用SrO·6Fe2O3。 浆料的固体成分浓度优选为50~90wt%的范围。Sr铁氧体颗粒的添加量优选为 2.5wt%~15wt%的范围。另外,Sr铁氧体颗粒的平均粒径如前述那样为 1.0μm~4.5μm的范围。

需要说明的是,将作为原料的Fe原料、Mn原料投入分散剂之前,根据 需要,也可以预先进行粉碎混合处理并进行预焙烧。另外,为了将Sr铁氧体 颗粒制成目标平均粒径,根据需要也可以进行湿式/干式粉碎处理。

本发明中使用的分散剂优选水。除了前述Fe原料、Mn原料、Sr铁氧体 颗粒以外,还可以根据需要在分散剂中配混粘合剂、分散剂、还原剂等。作 为粘合剂,例如优选使用聚乙烯醇。作为粘合剂的配混量,优选浆料中的浓 度设定为0.5~2wt%左右。另外,作为分散剂,例如可以优选使用聚羧酸铵等。 作为分散剂的配混量,优选浆料中的浓度设定为0.5~2wt%左右。另外,也可 以配混润滑剂、烧结促进剂等。

接着,根据需要对如上述那样制作的浆料进行湿式粉碎。例如,使用球 磨机、振动磨机进行规定时间湿式粉碎。粉碎后的原材料的平均粒径优选为 50μm以下,更优选为10μm以下。优选使振动磨机、球磨机包含规定粒径的 介质。作为介质的材质,可以举出铁系的铬钢、氧化物系的氧化锆、二氧化 钛、氧化铝等。粉碎工序的形式可以任意是连续式和分批式。粉碎物的平均 粒径可以根据粉碎时间、转速、所使用的介质的材质/粒径等来进行调整。

然后,对粉碎后的浆料进行喷雾干燥来进行造粒。具体而言,将浆料导 入喷雾干燥器等喷雾干燥机中,向气氛中进行喷雾,由此造粒成球状。喷雾 干燥时的气氛温度优选为100~300℃的范围。由此,得到平均粒径10~200μm 的球状的造粒物。需要说明的是,对于所得造粒物,理想的是,使用振动筛 等去除粗大颗粒、细粉,制成粒度分布窄的造粒物。

接着,将所得造粒物投入到加热的炉中,进行焙烧,生成铁氧体颗粒。 只要将焙烧温度和焙烧气氛设定为用于生成目标磁相的温度范围和氧气浓 度范围即可,但用于制造本发明的铁氧体颗粒时,优选在1000~1400℃的温 度范围、氧气浓度100~20000ppm的范围进行焙烧。更优选地,在1000℃ ~1300℃的温度范围、氧气浓度100~6000ppm的范围进行加热,在氧气浓度 5000~20000ppm的范围内进行冷却是优选的。另外,焙烧时间优选为1小时 ~6小时的范围,更优选为1小时~3小时的范围。然后,将铁氧体颗粒从焙烧 温度慢慢冷却至常温。

接着,在铁氧体颗粒相互粘着的情况下,根据需要进行解粒。具体而言, 例如,利用锤磨机等对铁氧体颗粒进行解粒。解粒工序的形式可以任意是连 续式和分批式。然后,根据需要,为了使粒径集中到规定范围,也可以进行 分级。作为分级方法,可以使用风力分级、筛分级等以往公知的方法。另外, 用风力分级机进行1次分级之后,也可以用振动筛、超声波筛使粒径集中到 规定范围。进而,在分级工序后,也可以利用磁场精选机去除非磁性颗粒。

其后,根据需要,也可以在氧化性气氛中加热分级后的铁氧体颗粒,在 颗粒表面形成氧化覆膜,实现高电阻化。氧化性气氛也可以任意是大气气氛 以及氧气和氮气的混合气氛,更优选氧气浓度10%~100%的气氛下。另外, 加热温度优选为200℃~700℃的范围,进一步优选为250℃~600℃。加热时间 优选为0.5小时~20小时的范围。

将如上述那样制作的本发明的铁氧体颗粒用作电子照相显影用载体时, 也可以将铁氧体颗粒直接用作电子照相显影用载体,但从带电性等的观点出 发,优选用树脂覆盖铁氧体颗粒的表面来使用。

作为用于覆盖铁氧体颗粒的表面的树脂,可以使用以往公知的树脂,例 如可以举出聚乙烯、聚丙烯、聚氯乙烯、聚4-甲基戊烯-1、聚偏二氯乙烯、 ABS(丙烯腈-丁二烯-苯乙烯)树脂、聚苯乙烯、(甲基)丙烯酸系树脂、聚 乙烯醇系树脂、以及聚氯乙烯系、聚氨基甲酸酯系、聚酯系、聚酰胺系、聚 丁二烯系等的热塑性弹性体、含氟有机硅系树脂等。

关于用树脂覆盖铁氧体颗粒的表面,将树脂的溶液或者分散液施加在铁 氧体颗粒即可。作为涂布溶液用的溶剂,可以使用以下溶剂中的1种或者2种 以上:甲苯、二甲苯等芳烃系溶剂;丙酮、甲基乙基酮、甲基异丁基酮、环 己酮等酮系溶剂;四氢呋喃、二噁烷等环醚类溶剂;乙醇、丙醇、丁醇等醇 系溶剂;乙基溶纤剂、丁基溶纤剂等溶纤剂系溶剂;乙酸乙酯、乙酸丁酯等 酯系溶剂;二甲基甲酰胺、二甲基乙酰胺等酰胺系溶剂等。涂布溶液中的树 脂成分浓度通常优选处于0.0010wt%~30wt%的范围内,尤其优选处于 0.0010wt%~2wt%的范围内。

作为对铁氧体颗粒覆盖树脂的方法,例如可以使用喷雾干燥法、流化床 法或使用流化床的喷雾干燥法、浸渍法等。其中,从用较少的树脂量能够高 效地进行涂布的方面考虑,特别优选流化床法。对于树脂覆盖量,例如在流 化床法的情况下,可以根据喷涂的树脂溶液量、喷涂时间进行调整。

本发明的电子照相用显影剂是将如上述那样制作的载体和调色剂混合 而成的。对载体和调色剂的混合比没有特别限制,由所使用的显影设备的显 影条件等适宜地决定即可。通常,显影剂中的调色剂浓度优选为1wt%~20wt% 的范围。这是因为,调色剂浓度小于1wt%时,图像浓度变得过薄,另一方 面,调色剂浓度大于20wt%时,显影设备内发生调色剂飞散,有可能产生机 内污垢、调色剂附着在转印纸等的背景部分的问题。更优选的调色剂浓度为 3wt%~15wt%的范围。

载体和调色剂的混合可以使用以往公知的混合装置。例如可以使用亨舍 尔混合机、V型混合机、转鼓混合机、混合器(hybridizer)等。

实施例

以下,通过实施例对本发明更进一步详细地说明,但本发明丝毫不被这 些例子所限定。

(实施例1)

将以Fe2O3(平均粒径:0.6μm)71.7wt%、Mn3O4(平均粒径:2μm)28.3wt% 进行混合的混合物在900℃下大气中加热2小时,得到预烧粉末。将该预烧粉 末20.0kg和Sr铁氧体(平均粒径:1.2μm)1.1kg分散在7.0kg的水中,添加作 为分散剂的聚羧酸铵系分散剂239g、作为还原剂的炭黑60.2g,利用湿式球磨 机(介质直径2mm)进行粉碎处理,得到混合浆料。

用喷雾干燥器对该浆料在约130℃的热风中进行喷雾,得到干燥造粒粉。 需要说明的是,此时,利用筛去除目标粒度分布以外的造粒粉。将该造粒粉 投入到电炉中,在1110℃下焙烧3小时。该焙烧工序中,在氧气浓度为5000ppm 的电炉内的气氛下进行加热,在氧气浓度为15000ppm的电炉内的气氛下进行 冷却。对所得焙烧物进行解粒后,使用筛进行分级,制成平均粒径35μm。

进而,对所得焙烧物在440℃、大气下保持1小时,由此实施高电阻化处 理,得到铁氧体颗粒。

用下述所示方法测定所得铁氧体颗粒的组成、物性、磁特性、电特性、 机械特性。将测定结果示于表2。另外,图1示出铁氧体颗粒的SEM照片。

需要说明的是,所得铁氧体颗粒中,表示锰组成比的上述所谓的x的值 为0.8,表示铁组成比的3-x的值为2.2。认为所得晶相为MnFe2O4、SrO·nFe2O3(n=0.5~6.5)。

(铁氧体颗粒表面的凹凸度和晶粒的大小的标准偏差)

使用キーエンス公司制造的“VK-210、VK-X200”按照下述步骤进行测 定。

1.在显微镜用标本上粘贴碳带,在其上固定试样。

2.显微镜上显示25μm比例尺,用3000倍的倍率寻找能够拍摄25μm附近 的数个颗粒的视野。

3.其后,自动设定亮度,采集图像。一边确认所采集的图像和轮廓数据 这两者,一边手动引出水平线轮廓,估算粒径,解析25μm附近的颗粒。

(凹凸度)

作为图像的预处理,实施峰值噪声的去除(截集(cutlevel);普通)。 接着,以要解析的颗粒顶点(top)为中心,指定20μm见方区域,进行曲率 校正(倾斜校正、球面校正(自动))。然后,将要解析的颗粒顶点的中央附 近(颗粒顶点)φ10μm(内切圆的内侧)指定为测定区域,实施截取(λs0.25μm, λc0.08mm)。其后,输出数据,将每1个颗粒的Rz值作为凹凸度进行测定。 需要说明的是,考虑到颗粒间的波动,所以测定100个颗粒,将其平均值作 为凹凸度。

(晶粒的大小的标准偏差)

作为图像的预处理,实施去除峰值噪声(截集:普通)。接着,以要解 析的颗粒顶点为中心,指定20μm见方区域,进行曲率校正(倾斜校正,球 面校正(自动))。接着,

(1)将要解析的颗粒顶点的中央附近(颗粒顶点10μm见方区域)作为 测定区域,确定10条长度10μm的测定线。

(2)对于10条测定线,进行线扫描测定光量值(截取(λs0.25μm, λc0.08mm))。

(3)对各测定线进行以下测定计算。

A:将光量范围的中央值作为基准面,测定超出基准面的部分的波峰的 底面(宽度)。

B:对于测得的多个宽度的长度,计算标准偏差(各线的SD)。

(4)将10条各线的SD值的平均值作为各颗粒的SD。

(5)测定100个颗粒,将其平均值作为表中记载的晶体尺寸的波动σ。

图4示出颗粒表面的晶粒的大小的标准偏差σ的计算例。

(磁特性)

使用室温专用振动试样型磁力计(VSM)(东英工业株式会社制, VSM-P7),外部磁场0~50000(奥斯特)的范围下连续地施加1次循环,测定 磁化σ1k

(BET比表面积)

使用BET一点法比表面积测定装置(“MacsorbHMmodel-1208”マウン テック公司制),将试样8.500g填充到容积5mL的容器中,在200℃下脱气30 分钟进行测定。

(表观密度)

根据JISZ2504进行测定。

(铁氧体颗粒的带电量)

将铁氧体颗粒9.5g、市售的全彩机的调色剂0.5g放入100ml的带塞子的玻 璃瓶中,在25℃、相对湿度50%的环境下放置12小时进行湿度调节。用振动 器将湿度调节后的铁氧体颗粒和调色剂振动30分钟进行混合。此处,振动器 使用株式会社ヤヨイ制造的NEW-YS型,以200次/分钟、角度60°进行。称 量500mg混合后的铁氧体颗粒和调色剂,用带电量测定装置测定带电量。带 电量测定装置使用日本パイオテク公司制造的“STC-1-C1型”,吸引压力为 5.0kPa,使用SUS制795目的吸引用筛。对同一试样进行2次测定,将它们的 平均值作为带电量。带电量由下述式算出。

带电量(μC/g)=实测电荷(nC)×103×系数(1.0083×10-3)÷调色 剂重量

(式中,调色剂重量=(吸引前重量(g)-吸引后重量(g)))

(载体的带电量)

关于铁氧体颗粒的表面被树脂覆盖的载体的带电量,与铁氧体颗粒的带 电量同样地操作进行测定。需要说明的是,测定是在温度25℃、湿度50%RH 的气氛下进行的。

(铁氧体颗粒的强度)

将铁氧体颗粒30g投入到样品磨(“SK-M10型”协立理工株式会社制) 中,以转速14000rpm搅拌60秒钟。接着,使用激光衍射式粒度分布测定装置 (“MicrotracModel9320-X100”日机装公司制),测定粒径22μm以下的累计 颗粒频率。然后,算出利用样品磨处理前后的、粒径22μm以下的累计颗粒 频率的增加率(%),作为颗粒强度的指标。增加率越小表示颗粒的强度越 高。

(平均粒径的测定)

铁氧体颗粒和Sr铁氧体颗粒的平均粒径使用日机装公司制造的 “MicrotracModel9320-X100”来进行测定。

(图像评价)

将有机硅树脂(東レダウコーニンゲ公司制,SR2411)溶解于甲苯, 准备涂布树脂溶液。然后,将铁氧体颗粒和树脂溶液以重量比计为9:1装填 到搅拌机中,在温度150℃~250℃下加热搅拌3小时。接着,投入到热风循环 式加热装置中,在温度250℃下进行5小时加热,使覆盖树脂层固化,制作载 体。

使用罐式球磨机将该载体95重量份和平均粒径5μm左右的调色剂5重量 份混合规定时间,制作电子照相用显影剂。将该双组分类的电子照相用显影 剂投入到与数字反转显影方式的60cpm机相当的评价机中,对于初期、成像 100k张之后、成像200k张之后,通过目视按照下述基准进行图像评价。

◎:非常良好地再现了试验图像。

○:基本再现了试验图像。

△:几乎没有再现试验图像。

×:完全没有再现试验图像。

(实施例2)

除了作为原料使用平均粒径2.5μm的Sr铁氧体以外,与实施例1同样地操 作,得到铁氧体颗粒。然后,与实施例1同样地操作,测定物性等。将测定 结果一并示于表2。

(实施例3)

以使组成与实施例1的铁氧体颗粒相同的方式配混作为原料的平均粒径 2.5μm的Sr铁氧体0.55kg,除此以外,与实施例1同样地操作,得到铁氧体颗 粒。然后,与实施例1同样地操作,测定物性等。将测定结果一并示于表2。

(实施例4)

以使组成与实施例1的铁氧体颗粒相同的方式配混作为原料的平均粒径 2.5μm的Sr铁氧体2.2kg,除此以外,与实施例1同样地操作,得到铁氧体颗粒。 然后,与实施例1同样地操作,测定物性等。将测定结果一并示于表2。

(比较例1)

以使组成与实施例1的铁氧体颗粒相同的方式配混SrCO3146g而替换Sr 铁氧体颗粒,除此以外,与实施例1同样地操作,得到铁氧体颗粒。然后, 与实施例1同样地操作,测定物性等。将测定结果一并示于表2。

(比较例2)

以使组成与实施例1的铁氧体颗粒相同的方式配混作为原料的平均粒径 5.0μm的Sr铁氧体1.1kg,除此以外,与实施例1同样地操作,得到铁氧体颗粒。 然后,与实施例1同样地操作,测定物性等。将测定结果一并示于表2。

[表1]

[表2]

由表2可知,对于将Sr铁氧体颗粒用作原料的实施例1~4的铁氧体颗粒, 颗粒表面的凹凸度为3.1μm~4.5μm,显露在颗粒表面的晶粒的大小的标准偏 差σ为1.5μm~3.3μm,带电量和强度高。另外,对实施例1~4的铁氧体颗粒进 行树脂覆盖而用作载体时,在承受200k张印刷后,仍然能够抑制带电量的降 低,得到良好的图像。

与此相对,对于将SrCO3用作原料的比较例1的铁氧体颗粒,颗粒表面的 凹凸度小到1.8μm,而且显露在颗粒表面的晶粒的大小的标准偏差σ大到 4.0μm、有波动。另外,对于使用平均粒径5.0μm的Sr铁氧体作为原料的比较 例2的铁氧体颗粒,颗粒表面的凹凸度大到5.0μm,而且显露在颗粒表面的晶 粒的大小的标准偏差σ大到5.0μm、有波动。因此,比较例1和比较例2的铁氧 体颗粒的带电量和强度均低。另外,对这些铁氧体颗粒进行树脂覆盖而用作 载体时,在承受100k张印刷后,带电量大幅降低,图像的再现性变差。而且, 在承受200k张印刷后,带电量进一步大幅降低,图像完全没有再现。

产业上的可利用性

对于本发明的铁氧体颗粒,颗粒表面的覆盖树脂随着长期使用仍部分地 残留,能够抑制带电特性的降低,因而是有用的。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号