首页> 中国专利> 含镧系元素的前体的制备和含镧系元素的薄膜的沉积

含镧系元素的前体的制备和含镧系元素的薄膜的沉积

摘要

本文描述了沉积含稀土金属的层的方法及组合物。概括而言,所公开的方法使用诸如化学气相沉积或原子层沉积的沉积方法沉积包含含稀土的化合物的前体化合物。所公开的前体化合物包括具有至少一个脂族基团作为取代基的环戊二烯基配体和脒配体。

著录项

  • 公开/公告号CN102057077A

    专利类型发明专利

  • 公开/公告日2011-05-11

    原文格式PDF

  • 申请/专利号CN200980120906.4

  • 发明设计人 V·R·帕里姆;C·杜萨拉;

    申请日2009-06-05

  • 分类号C23C16/18(20060101);C23C16/40(20060101);C07C257/14(20060101);C07F17/00(20060101);

  • 代理机构11247 北京市中咨律师事务所;

  • 代理人林柏楠;彭飞

  • 地址 法国巴黎

  • 入库时间 2023-12-18 02:17:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-07-22

    未缴年费专利权终止 IPC(主分类):C23C16/18 授权公告日:20131113 终止日期:20140605 申请日:20090605

    专利权的终止

  • 2013-11-13

    授权

    授权

  • 2011-07-13

    实质审查的生效 IPC(主分类):C23C16/18 申请日:20090605

    实质审查的生效

  • 2011-05-11

    公开

    公开

说明书

背景技术

工业面临的一个严重挑战为开发用于动态随机存取内存(Dynamic Random Access Memory,DRAM)及电容器的新颖门极介电材料。数十年来,二氧化硅(SiO2)为可靠介电质,但作为晶体管已持续缩小且技术由“全Si”晶体管变为“金属门极/高k值”晶体管,SiO2基门极介电质的可靠性达到其物理极限。由于用于目前技术的尺寸正在缩小,因此对新颖高介电常数材料及方法的需求逐渐增加,且变得愈来愈关键。尤其基于含镧系元素材料的新一代氧化物被视为在电容方面与公知介电材料相比产生了明显优势。

然而,含镧系元素层的沉积较难,并不断需要新颖材料及方法。例如,原子层沉积(ALD)已被视为用于微电子器件制造的重要薄膜生长技术,其依赖于通过惰性气体吹扫而分开的、交替施用的前体的连续及饱和的表面反应。ALD的表面受控性质使得薄膜的生长能够在精确厚度控制下具有高度正形性及均一性。对开发用于稀土材料的新颖ALD方法的需求是显而易见的。

令人遗憾的是,已证实将化合物成功并入沉积方法中是困难的。通常提出了两类分子:β-二酮合物类及环戊二烯基类。前类化合物是稳定的,但熔点始终超过90℃,从而使其不实用。2,2-6,6-四甲基庚二酸根合镧系元素[La(tmhd)3]的熔点高达260℃,且相关的2,2,7-三甲基辛二酸根合镧系元素[La(tmod)3]的熔点为197℃。另外,β-二酮合物类的分配效率非常难以控制。未经取代的环戊二烯基化合物也表现出低的挥发性及高熔点。分子设计可有助于改良挥发性并降低熔点。然而,在工程条件中,这些种类的材料已证实用途有限。例如,La(iPrCp)3并不允许高于225℃的ALD方案。

目前可得到的一些含镧系元素的前体在用于沉积方法中时表现许多缺点。例如,氟化的镧系元素前体可产生副产物形式的LnF3。已知此副产物难以移除。

因此,仍然需要用于沉积含镧系元素薄膜的替代性的前体。

发明概要

本文公开了下述通式的含镧系元素前体:

Ln(R1Cp)m(R2-N-C(R4)=N-R2)n

其中:

-Ln为镧系金属,具有约0.75至约0.94的离子半径、3+电荷及6的配位数;

-R1选自由H及C1-C5烷基链组成的组;

-R2选自由H及C1-C5烷基链组成的组;

-R4选自由H及Me组成的组;

-n及m在1至2的范围内;且

-该前体具有低于约105℃的熔点。

所公开的含镧系元素前体可任选地包括下述一个或多个方面:

-Ln选自由Lu、Gd、Tb、Dy、Ho、Er、Tm及Yb组成的组。

-Ln选自由Er及Yb组成的组。

-R1选自由Me、Et及iPr组成的组。

-R2选自由iPr及tBu组成的组。

还公开了在半导体基底上沉积含镧系元素的薄膜的方法,该方法包括:

a)提供基底,

b)提供所公开的含镧系元素的前体,和

c)在该基底上沉积含镧系元素的薄膜。

所公开的方法可任选包括下述一个或多个方面:

-在介于约150℃与600℃之间的温度使含镧系元素的薄膜沉积在所述基底上。

-在介于约0.5毫托与约20托之间的压力使含镧系元素的薄膜沉积在所述基底上。

-所述含镧系元素的前体在低于70℃的温度为液体。

-所述含镧系元素的前体在低于40℃的温度为液体。

-所述含镧系元素的薄膜选自由Ln2O3、(LnLn′)O3、Ln2O3-Ln′2O3、LnSixOy、LnGexOy、(Al,Ga,Mn)LnO3、HfLnOx及ZrLnOx组成的组,其中Ln与Ln′不同。

-含镧系元素薄膜选自由HfErOx、ZrErOx、HfYbOx及ZrYbOx组成的组。

-含镧系元素前体具有选自由Ln(R1Cp)2(NZ-fmd)、Ln(R1Cp)2(NZ-amd)、Ln(R1Cp)(NZ-fmd)2及Ln(R1Cp)(NZ-amd)2组成的组的通式,其中Ln选自由Y、Gd、Dy、Er及Yb组成的组;R1选自由Me、Et及iPr组成的组;且Z为iPr或tBu。

还公开了在基底上形成含镧系元素薄膜的第二种方法,其包括下述步骤:提供反应器,该反应器内放置有至少一个基底;将本文中所公开的至少一种含镧系元素的前体引入该反应器中;和使用沉积方法使所述含镧系元素的前体与所述基底接触,以在所述基底的至少一个表面上形成含镧系元素的层。

所公开的第二种方法可任选包括下述一个或多个方面:

-向所述反应器中提供至少一种含氧流体,并使所述含镧系元素前体与该含氧流体反应。

-所述含氧流体选自由O2、O3、H2O、H2O2、乙酸、福尔马林、多聚甲醛及其组合组成的组。

-所述含镧系元素的前体和反应物质当在化学气相沉积法中时至少部分同时引入,或当在原子层沉积法中时至少部分先后引入。

-将金属前体引入所述反应器中,其中该金属前体不同于所述含镧系元素的前体,且沉积金属前体的至少一部分,以在所述一个或多个基底上形成含镧系元素的层。

-所述金属前体的金属选自由Hf、Si、Al、Ga、Mn、Ti、Ta、Bi、Zr、Pb、Nb、Mg、Sr、Y、Ba、Ca、镧系元素及其组合组成的组。

-所述沉积方法为化学气相沉积法。

-所述沉积方法为具有超过一个的沉积循环的原子层沉积法。

-所述含镧系元素的前体具有选自由Ln(R1Cp)2(NZ-fmd)、Ln(R1Cp)2(NZ-amd)、Ln(R1Cp)(NZ-fmd)2及Ln(R1Cp)(NZ-amd)2组成的组的通式,其中Ln选自由Y、Gd、Dy、Er及Yb组成的组;R1选自由Me、Et及iPr组成的组;且Z为iPr或tBu。

还公开了涂有含镧系元素的薄膜的基底,其包含所公开的第二种方法的产物。

符号及命名法

在整个下述说明书和权利要求书中使用特定的缩写、符号和术语,它们包括:缩写“Ln”指镧系元素,其包括下述元素:钪(“Sc”)、钇(“Y”)、镥(“Lu”)、镧(“La”)、铈(“Ce”)、镨(“Pr”)、钕(“Nd”)、钐(“Sm”)、铕(“Eu”)、钆(“Gd”)、铽(“Tb”)、镝(“Dy”)、钬(“Ho”)、铒(“Er”)、铥(“Tm”)或镱(“Yb”);缩写“Cp”指环戊二烯;缩写指埃;符号(“′”)用于表示与第一个不同的成分,例如(LnLn′)O3指含有两种不同镧系元素的镧系元素氧化物;术语“脂族基团”指C1-C5直链或支链烷基;术语“烷基”指仅含有碳和氢原子的饱和官能团;缩写“Me”指甲基;缩写“Et”指乙基;缩写“Pr”指丙基;缩写“iPr”指异丙基;缩写“tBu”指叔丁基;缩写“NZ-amd”指ZNC(CH3)=NZ,其中Z为限定的烷基,例如iPr或tBu;缩写“NZ-fmd”指ZNC(H)=NZ,其中Z为限定的烷基,例如iPr或tBu;缩写“CVD”指化学气相沉积;缩写“LPCVD”指低压化学气相沉积;缩写“ALD”指原子层沉积;缩写“P-CVD”指脉冲化学气相沉积;缩写“PE-ALD”指等离子体增强的原子层沉积;缩写“MIM”指金属绝缘体金属(用于电容器中的结构);缩写“DRAM”指动态随机存取内存;缩写“FeRAM”指铁电随机存取内存;缩写“CMOS”指互补金属氧化物半导体;缩写“THF”指四氢呋喃;缩写“TGA”指热重分析;缩写“TMA”指三甲基铝;缩写“TBTDET”指叔丁基亚氨基三(二乙基氨基)钽(Ta[N(C2H5)2]3[NC(CH3)3]);缩写“TAT-DMAE”指四乙氧化二甲基氨基乙氧化钽;缩写“PET”指五乙氧基钽;缩写“TBTDEN”指叔丁基亚氨基三(二乙基氨基)铌;缩写“PEN”指五乙氧基铌;缩写“TriDMAS”指三(二甲基氨基)硅烷[SiH(NMe2)3];缩写“BDMAS”指双(二甲基氨基)硅烷;缩写“BDEAS”指双(二乙基氨基)硅烷[SiH2(NEt2)2];缩写“TDEAS”指四-二乙基氨基硅烷;缩写“TDMAS”指三(二甲基氨基)硅烷;缩写

“TEMAS”指四-乙基甲基氨基硅烷(Si(N(C2H5)(CH3))4);缩写“BTBAS”指双(叔丁基氨基)硅烷[SiH2(NHtBu)2]。

附图简述

为了进一步了解本发明的性质和目的,应结合附图参考下述实施方式。

图1为显示Y(MeCp)2(NiPr-amd)的重量损失百分数随温度变化的TGA图。

图2为Y(iPrCP)2(NiPr-amd)的TGA图。

图3为Er(MeCp)2(iPr-N-C(Me)=N-iPr)的TGA图。

图4为Er(MeCp)2(tBu-N-C(Me)=N-tBu)的TGA图。

图5为Er(EtCp)2(iPr-N-C(Me)=N-iPr)的TGA图。

图6为Er(MeCp)2(iPr-N-C(H)=N-iPr)的TGA图。

图7为Yb(MeCp)2(iPr-N-C(Me)=N-iPr)的TGA图。

图8为Yb(MeCp)2(tBu-N-C(Me)=N-tBu)的TGA图。

图9为Yb(EtCp)2(iPr-N-C(Me)=N-iPr)的TGA图。

图10为Yb(EtCp)2(iPr-N-C(H)=N-iPr)的TGA图。

图11为Yb(iPrCp)2(iPr-N-C(H)=N-iPr)的TGA图。

优选实施方式的描述

本文公开了具有下述通式的含镧系元素的前体化合物:

Ln(R1Cp)m(R2-N-C(R4)=N-R2)n

其中Ln表示镧族元素,其包括Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu;R1选自H或C1-C5烷基链;R2选自H或C1-C5烷基链;R4选自H、C1-C5烷基链及NR′R″,其中R′及R″独立地选自C1-C5烷基链;m选自1或2;且n选自1或2。

含镧系元素前体在与其相应的均配化合物(homoleptic compound)相比提供了独特的物理及化学性质,这些化合物包括三取代的环戊二烯基镧系元素化合物Ln(RCp)3、三-乙脒合物(tris-acetamidinate)化合物Ln(R-N-C(R′)=N-R)3或三-甲脒合物(tris-formamidinate)化合物Ln(R-N-C(H)=N-R)3。这些性质包括对金属中心周围的空间拥挤的较好控制,此又控制了基底上的表面反应及与第二反应物(诸如氧源)的反应。独立地精调配体上的取代基可增加挥发性及热稳定性,并降低熔点以得到液体或低熔点固体(具有低于约105℃的熔点)。

为了合成具有适合于气相沉积法的性质的稳定的含镧系元素的前体(即,可挥发但仍热稳定的液体或低熔点固体(具有低于约105℃的熔点)),已观察到中心金属离子的性质(配位数、离子半径)与配体(立体效应、两个杂配配体(heteroleptic ligand)的比率)之间的直接相关性。优选地,金属化合物包括约0.75至约0.94的离子半径、3+电荷和6的配位数。因此,Ln优选选自小的镧系元素,包括Sc、Y、Lu、Gd、Tb、Dy、Ho、Er、Tm及Yb。更优选地,Ln选自Lu、Gd、Tb、Dy、Ho、Er、Tm或Yb。优选地,R1为C1-C3烷基链;R2为C3-C4烷基链,且R4为H或Me。优选地,所述含镧系元素的前体具有低于约105℃、优选低于约80℃、更优选低于约70℃、且甚至更优选低于约40℃的熔点。优选的含镧系元素的前体包括Ln(R1Cp)2(NZ-fmd)、Ln(R1Cp)2(NZ-amd)、Ln(R1Cp)(NZ-fmd)2及Ln(R1Cp)(NZ-amd)2,其中Ln为Y、Gd、Dy、Er或Yb;R1为Me、Et或iPr;且Z为iPr或tBu。

Ln(R1Cp)m(R2-N-C(R4)=N-R2)n前体(其中m=2,n=1或m=1,n=2)的合成可通过下述方法来进行:

方法A

通过使Ln(R1Cp)2X(其中X=Cl、Br或I)与M(R2-N-C(R4)=N-R2)(其中M=Li、Na、K)反应,或通过使Ln(R1Cp)X2与2M(R2-N-C(R4)=N-R2)反应(方案-1)。

方案-1

方法B

通过使Ln(R1Cp)3与1当量脒/胍R2-NH-C(R4)=N-R2反应以得到Ln(R1Cp)2(R2-N-C(R4)=N-R2),或与2当量脒/胍R2-NH-C(R4)=N-R2反应以得到Ln(R1Cp)(R2-N-C(R4)=N-R2)2(方案-2)。

方案-2

方法C

使LnX3(其中X=Cl、Br、I)(分步反应,无需分离中间产物)与mR1CpM(其中M=Li、Na、K)原位反应,然后过滤,且使滤液与nM(R2-N-C(R4)=N-R2)反应,以产生Ln(R1Cp)m(R2-N-C(R4)=N-R2)n前体(方案-3)。

方案-3

可以使用本领域技术人员已知的任何沉积方法沉积所公开的前体化合物(下文称为“含镧系元素的前体”),以形成含镧系元素薄膜。合适的沉积方法的实例包括(但不限于)常规化学气相沉积(CVD)、低压化学气相沉积(LPCVD)、原子层沉积(ALD)、脉冲化学气相沉积(P-CVD)、等离子体增强的原子层沉积(PE-ALD)或其组合。

要沉积含镧系元素薄膜的基底的类型将视预期的最终用途而变化。在一些具体实例中,该基底可选自用作MIM、DRAM、FeRam技术中的介电材料或CMOS技术中的门极介电质的氧化物(例如,基于HfO2的材料、基于TiO2的材料、基于ZrO2的材料、基于稀土氧化物的材料、基于三元氧化物的材料,等等),或选自用作铜与低k值层之间的氧屏障的基于氮化物的薄膜(例如,TaN)。其它基底可用于制造半导体、光电装置、LCD-TFT或平板装置。这些基底的实例包括(但不限于)固体基底,例如金属基底(例如,Au、Pd、Rh、Ru、W、Al、Ni、Ti、Co、Pt及金属硅化物,例如TiSi2、CoSi2及NiSi2);含有金属氮化物的基底(例如,TaN、TiN、WN、TaCN、TiCN、TaSiN及TiSiN);半导体材料(例如,Si、SiGe、GaAs、InP、金刚石、GaN及SiC);绝缘体(SiO2、Si3N4、SiON、HfO2、Ta2O5、ZrO2、TiO2、Al2O3及钛酸锶钡);或包括许多这些材料的组合的其它基底。所用的实际基底也可视所用的特定前体具体实例而定。但在许多情况下,所用的优选基底将选自TiN、Ru及Si型基底。

将所述含镧系元素的前体引入含有至少一个基底的反应室中。该反应室可以是进行沉积方法的装置的任何外壳或腔室,该装置例如(但不限于)平行板型反应器、冷壁型反应器、热壁型反应器、单晶圆反应器、多晶圆反应器或其它这些类型的沉积系统。

可将反应室保持在约0.5毫托至约20托的压力。另外,反应室内的温度可以为约250℃至约600℃。本领域技术人员将认识到,温度可经由简单的实验最优化,以达到所需结果。

可将基底加热至足够的温度,以在足够生长速率下获得具有所需物理状态及组成的所需含镧系元素薄膜。可将基底加热达到的非限制性示例性温度范围包括150℃至600℃。优选地,基底的温度保持低于或等于450℃。

可以液态将含镧系元素前体加入蒸发器,在此使其蒸发,然后将其引入反应室中。在其蒸发之前,可任选将所述含镧系元素的前体与一种或多种溶剂、一种或多种金属源、和一种或多种溶剂与一种或多种金属源的混合物混合。所述溶剂可选自由甲苯、乙苯、二甲苯、均三甲苯、癸烷、十二烷、辛烷、己烷、戊烷或其它溶剂组成的组。所得浓度可以为约0.05M至约2M。该金属源可包括现在已知或以后开发的任何金属前体。

或者,可通过将载气传送至含有含镧系元素前体的容器中、或通过将载气鼓泡进入含镧系元素前体中而使含镧系元素的前体蒸发。然后将载气和含镧系元素的前体引入反应室中。必要时,可将该容器加热至使得含镧系元素的前体处于其液相并具有足够蒸气压的温度。载气可包括(但不限于)Ar、He、N2及其混合物。可任选地在容器中将含镧系元素前体与溶剂、另一金属前体、或者它们的混合物混合。可以使容器保持在例如0至100℃的范围内的温度。本领域技术人员认识到,可以以已知方式调整容器的温度,以控制所蒸发的含镧系元素前体的量。

除了任选地在引入反应室中之前将含镧系元素前体与溶剂、金属前体和稳定剂混合之外,还可以将含镧系元素的前体与反应物质在反应室内混合。示例性反应物质包括(但不限于)H2、金属前体(例如TMA或其它含铝的前体)、其它含镧系元素的前体、TBTDET、TAT-DMAE、PET、TBTDEN、PEN及其任何组合。

当所需含镧系元素的薄膜还含有氧时,例如(且不限于)氧化铒,反应物质可包括氧源,该氧源选自(但不限于)O2、O3、H2O、H2O2、乙酸、福尔马林、低聚甲醛及其组合。

当所需含镧系元素的薄膜还含有氮时,例如(且不限于)氮化铒或碳氮化铒,反应物质可包括氮源,该氮源选自(但不限于)氮(N2)、氨及其烷基衍生物、肼及其烷基衍生物、含N的自由基(例如,N·、NH·、NH2·)、NO、N2O、NO2、胺及其任何组合。

当所需含镧系元素的薄膜还含有碳时,例如(且不限于)碳化铒或碳氮化铒,反应物质可包括碳源,该碳源选自(但不限于)甲烷、乙烷、丙烷、丁烷、乙烯、丙烯、叔丁烯、异丁烯、CCl4及其任何组合。

当所需含镧系元素的薄膜还含有硅时,例如(且不限于)硅化铒、氮硅化铒、硅酸铒、氮碳硅化铒,反应物质可包括硅源,该硅源选自(但不限于)SiH4、Si2H6、Si3H8、TriDMAS、BDMAS、BDEAS、TDEAS、TDMAS、TEMAS、(SiH3)3N、(SiH3)2O、三甲硅烷基胺、二硅氧烷、三甲硅烷基胺、二硅烷、三硅烷、烷氧基硅烷SiHx(OR1)4-x、硅烷醇Si(OH)x(OR1)4-x(优选为Si(OH)(OR1)3;更优选为Si(OH)(OtBu)3)、氨基硅烷SiHx(NR1R2)4-x(其中x为1、2、3或4;R1及R2独立地为H或直链、支链或环状C1-C6碳链;优选为TriDMAS、BTBAS及/或BDEAS)、及其任何组合。或者,目标薄膜可含有锗(Ge),在该情况下,上述含Si的反应物质可由含Ge的反应物质替换。

当所需含镧系元素薄膜还含有另一金属时,例如(且不限于)Ti、Ta、Hf、Zr、Nb、Mg、Al、Sr、Y、Ba、Ca、As、Sb、Bi、Sn、Pb或其组合,反应物质可包括选自(但不限于)下述物质的金属源:金属烷基,例如SbRi′3或SnRi′4(其中各Ri″独立地为H或直链、支链或环状C1-C6碳链);金属烷氧化合物,例如Sb(ORi)3或Sn(ORi)4(其中各Ri独立地为H或直链、支链或环状C1-C6碳链);及金属胺,例如Sb(NR1R2)(NR3R4)(NR5R6)或Ge(NR1R2)(NR3R4)(NR5R6)(NR7R8)(其中各R1、R2、R3、R4、R5、R6、R7及R8独立地为H、C1-C6碳链、或三烷基甲硅烷基,该碳链及三烷基甲硅烷基各为直链、支链或环状);及其任何组合。

可以将含镧系元素的前体和一种或多种反应物质同时(化学气相沉积)、先后(原子层沉积)或以其它组合引入反应室中。例如,可以在一个脉冲中引入含镧系元素的前体,并可以在单独的脉冲中一起引入两种其它金属源[改变的原子层沉积]。或者,反应室可以在引入含镧系元素的前体之前已含有反应物质。可使反应物质通过位置远离反应室的等离子体系统并分解为自由基。或者,可将含镧系元素的前体连续引入反应室中,而通过脉冲引入其它金属源(脉冲-化学气相沉积)。在各示例中,在脉冲之后可以进行吹扫或排空步骤,以除去引入的过量组分。在各示例中,脉冲可持续约0.01秒至约10秒、或者约0.3秒至约3秒、或者约0.5秒至约2秒的时间。

在一个非限制性示例性原子层沉积型方法中,将含镧系元素前体的气相引入反应室中,在该反应室中使其与合适的基底接触。然后可通过吹扫和/或排空反应器而从反应室中移除过量的含镧系元素的前体。将氧源引入反应室中,在该反应室中使其与吸收的镧系元素前体以自限的方式反应。通过扫和/或排空反应室而从反应室中移除任何过量氧源。如果所需薄膜是镧系元素氧化物薄膜,则该两步法可提供所需的薄膜厚度,或可重复该两步法直至获得具有必要厚度的薄膜。

或者,如果所需薄膜为镧系元素金属氧化物薄膜,则可以在上述两步法之后将金属前体的蒸气引入反应室中。金属前体将基于所沉积的镧系金属元素氧化物薄膜的性质来选择,并可包括不同的含镧系元素的前体。在引入反应室中后,使该金属前体与基底接触。通过吹扫和/或排空反应室而从反应室中移除任何过量的金属前体。同样,可将氧源引入反应室中,以与所述第二金属前体反应。通过吹扫和/或排空反应室而从反应室中移除过量氧源。若获得了所需薄膜厚度,则可终止该过程。然而,若需要较厚的薄膜,则可重复整个四步法。通过交替提供含镧系元素的前体、金属前体及氧源,可沉积具有所需组成及厚度的薄膜。

由上述方法产生的含镧系元素的薄膜或含镧系元素的层可包括Ln2O3、(LnLn′)O3、Ln2O3-Ln′2O3、LnSixOy、LnGexOy、(Al,Ga,Mn)LnO3、HfLnOx或ZrLnOx。优选地,含镧系元素的薄膜可包括HfErOx、ZrErOx、HfYbOx或ZrYbOx。本领域技术人员将认识到,通过判断选择适当的含镧系元素前体及反应物质,可获得所需薄膜组成。

实施例

提供下述非限制性实施例以进一步说明本发明的具体实施方式。然而,这些实施例不是为了包括全部情况,并且不是为了限制本文所述的本发明的范图。

对比实施例1

(非本发明的一部分)

试图通过说明书中所述的方法A和B合成La(EtCp)2(NiPr-amd)、La(EtCp)(NiPr-amd)2、La(iPrCp)2(NiPr-amd)及La(iPrCp)(NiPr-amd)2,结果无效。基于这些失败的尝试,我们相信无法使用说明书中所述的方法制备可分离量的具有通式La(R1Cp)m(R2-N-C(R4)=N-R2)n的含镧前体。

对比实施例2

(非本发明的一部分)

获得可分离量的具有通式Ce(iPrCp)2(NiPr-amd)的含铈前体,但很快就分解。

对比实施例3

(非本发明的一部分)

基于来自对比实施例1及2的结果及下述实施例1至12中所提供的结果,申请人希望检验较小半径分子提供较好络合物的理论。获得了下述络合物的分离。然而,在热重分析过程中,各自产生了非常高百分数的剩余质量(下面提供),表明各自均不适于气相沉积法。

Ni(Cp)(iPr-N-C(Me)=N-iPr);21%残余物

Ni(EtCp)(iPr-N-C(Me)=N-iPr):20%残余物

Ni(iPrCp)(iPr-N-C(Me)=N-iPr):20%残余物

Ni(nBuCp)(iPr-N-C(Me)=N-iPr):25%残余物

基于这些结果,申请人得出结论,必须考虑金属的半径、电荷及配位数,以开发适合于气相沉积的本文中所公开的金属前体。

实施例1:Y(MeCp)2(NiPr-amd)

通过缓慢添加22.1mL(35.36mmol)MeLi乙醚(ether)溶液(1.6M)使30mL THF中的二异丙基碳二亚胺(4.47g,35.36mmol)在-78℃反应,由此制备NiPr-amd-Li。在-78℃搅拌该溶液30分钟,然后加热至室温并进一步在室温搅拌2小时。将全部量的新制NiPr-amd-Li溶液添加到在50mLTHF中含有Y(MeCp)2Cl(10.00g,35.38mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干以获得浅黄色蜡状固体。在115℃、14毫托下使所述浅黄色蜡状固体升华以产生12.24g,这相当于89%的产率。该浅黄色蜡状固体于30℃熔融,并在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下1%的剩余质量。这些结果描述于图1中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例2:Y(iPrCp)2(NiPr-amd)

向在60mL戊烷中含有Y(MeCp)3(11.11g,27.07mmol)的烧瓶中添加NiPr-amd-H(3.85g,27.07mmol)在20mL戊烷中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。于20℃、8毫托下蒸馏所得黄色液体。产量为11.4g(87%)。在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,该黄色液体留下1%的剩余质量。这些结果描述于图2中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例3:Er(MeCp)2(NiPr-amd)

通过缓慢添加53mL(84.36mmol)MeLi乙醚(ether)溶液(1.6M),使150mL THF中的二异丙基碳二亚胺(10.65g,84.36mmol)在-78℃反应,由此制备NiPr-amd-Li的溶液。在-78℃搅拌该溶液30分钟,然后加热至室温并进一步在室温搅拌2小时。将全部量的新制NiPr-amd-Li溶液添加到在250mL THF中含有Er(MeCp)2Cl(30.45g,83.36mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干以获得粉红色固体。于95至115℃、12毫托下使该粉红色固体升华以产生34.3g,这相当于87%的产率。粉红色固体于36℃熔融,并在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下2.5%的剩余质量。这些结果描述于图3中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例4:Er(MeCp)2(NiPr-amd)

向在60mL戊烷中含有Er(MeCp)3(11.54g,28.12mmol)的烧瓶中添加NiPr-amd-H(4.00g,128.12mmol)在20mL戊烷中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。于95至115℃、12毫托下将所得粉红色固体蒸馏。产量为11.4g(87%)。

实施例5:Er(MeCp)2(NtBu-amd)

通过缓慢添加5.2mL(8.31mmol)MeLi乙醚(ether)溶液(1.6M),使在30mL THF中的1,3-二叔丁基碳二亚胺(1.28g,8.31mmol)在-78℃反应,由此制备NtBu-amd-Li的溶液。在-78℃搅拌该溶液30分钟,然后加热至室温,并进一步在室温搅拌2小时。将全部量的新制NtBu-amd-Li溶液添加到在25mL THF中含有Er(MeCp)2Cl(3.00g,8.31mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干,以获得橙色固体。于100至150℃、10毫托下使该橙色固体升华以产生2.61g,这相当于64%的产率。该橙色固体在100℃熔融,并在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下1.8%的剩余质量。这些结果描述于图4中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例6:Er(EtCp)2(NiPr-amd)

向在200mL戊烷中含有Er(EtCp)3(20.00g,44.77mmol)的烧瓶中添加NiPr-amd-H(6.37g,44.77mmol)在50mL戊烷中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。于72至74℃、8毫托下蒸馏所得粉红色液体。产量为16.4g(67%)。熔点为18℃。该粉红色液体在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下2%的剩余质量。这些结果描述于图5中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例7:Er(MeCp)2(NiPr-fmd)

通过缓慢添加4.9mL(7.80mmol)MeLi乙醚(ether)溶液(1.6M),使在40mL THF中的二异丙基甲脒(10.00g,7.80mmol)在-78℃反应,由此制备NiPr-fmd-Li的溶液。在-78℃搅拌该溶液30分钟,然后加热至室温,并进一步在室温搅拌2小时。将全部量的新制NiPr-fmd-Li溶液添加到在50mL THF中含有Er(MeCp)2Cl(2.81g,7.80mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干以获得粉红色固体。于60至80℃、3毫托下使该粉红色固体升华以获得2.2g,这相当于62%的产率。粉红色固体于50℃熔融,在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下5%的剩余质量。这些结果描述于图6中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例8:Yb(MeCp)2(NiPr-amd)

通过缓慢添加34.1mL(54.54mmol)MeLi乙醚(ether)溶液(1.6M),使在100mL THF中的二异丙基碳二亚胺(6.88g,54.54mmol)在-78℃反应,由此制备NiPr-amd-Li的溶液。在-78℃搅拌该溶液30分钟,然后加热至室温,并进一步在室温搅拌2小时。将全部量的新制NiPr-amd-Li溶液添加到在120mL THF中含有Yb(MeCp)2Cl(20.00g,54.54mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干以获得橙色固体。于120℃、25毫托使该橙色固体升华以产生22.4g,这相当于87%的产率。该橙色固体于36℃熔融,在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下3%的剩余质量。这些结果描述于图7中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例9:Yb(MeCp)2(NtBu-amd)

通过缓慢添加5.1mL(8.18mmol)MeLi乙醚(ether)溶液(1.6M),使在30mL THF中的1,3-二叔丁基碳二亚胺(1.26g,8.18mmol)在-78℃反应,由此制备NtBu-amd-Li的溶液。在-78℃搅拌该溶液30分钟,然后加热至室温,并进一步在室温搅拌2小时。将全部量的新制NtBu-amd-Li溶液添加到在25mL THF中含有Yb(MeCp)2Cl(3.00g,8.18mmol)的烧瓶中。搅拌所得混合物整夜。将混合物于真空下蒸发至干。添加戊烷并搅拌,然后经由Celite牌硅藻土柱过滤。将戊烷溶剂于真空下蒸发至干以获得橙色固体。于125℃、10毫托使该橙色固体升华以产生1.73g,这相当于43%的产率。橙色固体在103℃熔融,在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下1.8%的剩余质量。这些结果描述于图8中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例10:Yb(EtCp)2(NiPr-amd)

向在250mL戊烷中含有Yb(EtCp)3(15.90g,35.15mmol)的烧瓶中添加NiPr-amd-H(5.00g,35.15mmol)在40mL戊烷中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。于110℃、10毫托蒸馏所得橙色液体。产量为15.00g(85%)。熔点为39℃。该橙色液体在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下3.5%的剩余质量。这些结果描述于图9中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例11:Yb(EtCp)2(NiPr-fmd)

向在20mL甲苯中含有Yb(EtCp)3(6.00g,13.26mmol)的烧瓶中缓慢添加NiPr-fmd-H(1.7g,13.26mmol)在20mL甲苯中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。在120℃、6毫托蒸馏所得橙色液体。产量为5.9g(97%)。该橙色液体在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下1.4%的剩余质量。这些结果描述于图10中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例12:Yb(iPrCp)2(NiPr-fmd)

向在20mL甲苯中含有Yb(EtCp)3(3.00g,6.07mmol)的烧瓶中缓慢添加NiPr-fmd-H(0.78g,6.07mmol)在20mL甲苯中的溶液。搅拌所得混合物整夜。于真空下蒸发溶剂及挥发物。于140℃、20毫托蒸馏所得橙色液体。产量为2.5g(80%)。该橙色液体在TGA分析过程中在氮气以180mL/min流动的气氛中以10℃/min的升温速率测量,留下2%的剩余质量。这些结果描述于图11中,该图是显示随着温度变化的重量损失百分数的TGA图。

实施例13:Er(MeCp)2(iPr-N-C(Me)=N-iPr)

使用实施例3的含镧系元素的前体Er(MeCp)2(iPr-N-C(Me)=N-iPr)及反应物O3在SiO2/Si基底上沉积Er2O3薄膜。使所述SiO2/Si基底保持在275℃的温度。在保持在115℃的鼓泡器中使粉红色固体前体蒸发。ALD循环包括10秒前体脉冲、然后5秒吹扫、然后2秒反应物脉冲、然后5秒吹扫。观察到Er2O3生长速率为1.2埃/循环。评估ALD方案直至275℃,其中沉积速率高达1.2埃/循环。

实施例14:Er(EtCp)2(iPr-N-C(Me)=N-iPr)

使用实施例6的含镧系元素的前体Er(EtCp)2(iPr-N-C(Me)=N-iPr)及反应物O3在SiO2/Si基底上沉积Er2O3薄膜。使所述SiO2/Si基底保持在250℃的温度。在保持在115℃的鼓泡器中使粉红色液体前体蒸发。ALD循环包括10秒前体脉冲、然后5秒吹扫、然后2秒反应物脉冲、然后5秒吹扫。观察到Er2O3生长速率为0.3埃/循环。评估ALD方案直至275℃,其中沉积速率高达0.3埃/循环。

实施例15:Yb(MeCp)2(iPr-N-C(Me)=N-iPr)

使用实施例8的含镧系元素的前体Yb(MeCp)2(iPr-N-C(Me)=N-iPr)及反应物H2O在SiO2/Si基底上沉积Yb2O3薄膜。使所述SiO2/Si基底保持在250℃的温度。在保持在115℃的鼓泡器中使橙色固体前体蒸发。ALD循环包括3秒前体脉冲、然后5秒吹扫、然后2秒反应物脉冲、然后10秒吹扫。观察到Yb2O3的生长速率为1.0埃/循环。评估ALD方案直至275℃,其中沉积速率高达1.0埃/循环。

实施例16:Yb(EtCp)2(iPr-N-C(Me)=N-iPr)

使用实施例10的含镧系元素前体Yb(EtCp)2(iPr-N-C(Me)=N-iPr)及反应物H2O在SiO2/Si基底上沉积Yb2O3薄膜。使所述SiO2/Si基底保持在250℃的温度。在保持在115℃的鼓泡器中使橙色液体前体蒸发。ALD循环包括10秒前体脉冲、然后5秒吹扫、然后2秒反应物脉冲、然后10秒吹扫。观察到Yb2O3生长速率为1.0埃/循环。评估ALD方案直至250℃,其中沉积速率高达1.0埃/循环。

虽然已展示并描述了本发明的具体实施方式,但可以在不偏离本发明的实质或教导的情况下由本领域技术人员对其作出修改。本文所述的具体实施方式仅为示例性的而非限制性的。组合物及方法的许多变更及修改是可能的,并在本发明的保护范围内。因此,保护范围并不限于本文所述的具体实施方式,而仅由所附权利要求限制,其保护范围应包括权利要求的主题的所有等效物。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号