首页> 中国专利> 纤维材料中取向纳米微孔形态特征的分析表征方法

纤维材料中取向纳米微孔形态特征的分析表征方法

摘要

本发明的纤维材料中取向纳米微孔形态特征的分析表征方法属于分析测试领域。采用功率为12~18KW的X射线小角散射设备,经过试样制备,按透射方式测量散射强度I(s),记录赤道散射曲线Ia(s),和子午散射曲线Ic(s);经数据处理过程,得到微孔长度、直径系列值及其相应的长径比,和不同粒度微孔的体积、体积分数以及单位体积内各种粒度微孔的数量。本发明的方法适用PAN基炭纤维、沥青基炭纤维、凯芙拉、聚酰亚胺等先进纤维材料的测试,所给出的纳米微孔的形态参数更为精确和全面,为研究和了解纤维材料中微孔特征与纤维性能之间关系提供一种有效手段。

著录项

  • 公开/公告号CN101349543A

    专利类型发明专利

  • 公开/公告日2009-01-21

    原文格式PDF

  • 申请/专利权人 吉林大学;

    申请/专利号CN200810051110.5

  • 发明设计人 高忠民;顾滨兵;高宇;李向山;

    申请日2008-08-22

  • 分类号G01B11/02;G01B11/08;G01B11/00;G01N23/201;G01N15/08;

  • 代理机构长春吉大专利代理有限责任公司;

  • 代理人王恩远

  • 地址 130012 吉林省长春市前进大街2699号

  • 入库时间 2023-12-17 21:23:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-10-22

    未缴年费专利权终止 IPC(主分类):G01B11/02 授权公告日:20101117 终止日期:20130822 申请日:20080822

    专利权的终止

  • 2010-11-17

    授权

    授权

  • 2009-03-11

    实质审查的生效

    实质审查的生效

  • 2009-01-21

    公开

    公开

说明书

技术领域:

本发明属于分析测试领域,主要针对PAN基炭纤维中取向纳米微孔精确形态特征的分析表征。这种分析方法对于沥青基炭纤维、凯芙拉、聚酰亚胺等先进纤维材料也同样适用。

背景技术:

PAN基炭纤维是当今比强度比模量最高、化学稳定性和热稳定性也十分优良的纤维材料。众所周知,炭纤维的优异性能与它的结构和结构缺陷密切相关,其中一种纳米级的缺陷——取向微孔洞也受到了人们的广泛注意。有关PAN基炭纤维中微孔形态的有关数据可参看表1。

表1PAN基炭纤维中微孔形态数据

  发表年代  作者  微孔长度/nm  微孔直径/nm  1985  Shioya M等  1.85  2000  Thunemann Andrean F等  40  0.25  2002  黄祖飞等  17.97  1.14  2005  高忠民等  2.10  1.60

从表1中可以看出,迄今为止人们对PAN基炭纤维中纳米孔的形态已有一定的了解,但是这种了解仍是十分初步和简略的。本发明提出一套对PAN基炭纤维等纤维材料中取向纳米微孔形态特征的精确全面的分析表征方法,并建议将这一分析表征方法作为研究和了解PAN基炭纤维中微孔特征与纤维性能之间关系的一种有效手段。

发明内容:

本发明要解决的技术问题是,提出一套对PAN基炭纤维、沥青基炭纤维、凯芙拉纤维以及聚酰亚胺纤维等纤维材料中取向纳米微孔形态特征的精确全面的分析表征方法,并可以将这一分析表征方法作为研究和了解PAN基炭纤维中微孔特征与纤维性能之间关系的一种有效手段。

本发明的具体技术方案如下。

一种纤维材料中取向纳米微孔形态特征的分析表征方法,采用功率为12~18KW的X射线小角散射设备,经过试样制备,测试参数选择和数据处理过程,得到微孔长度、直径系列值及其相应的长径比,和不同粒度微孔的体积、体积分数以及单位体积内各种粒度微孔的数量;

所述的试样制备,将纤维平行排列呈平板状,厚在0.3mm~0.7mm之间;

所述的测试参数选择,是按透射方式测量散射强度I(s),记录扫描方向与纤维轴垂直时的赤道散射强度曲线Ia(s),和扫描方向与纤维轴平行时的子午散射强度曲线Ic(s);

所述的数据处理,是当纳米微孔为沿纤维轴平行排列的长椭球形时,微孔的形态参数按下列方式处理散射强度曲线:

基于子午扫描曲线的表达方式:

Ic(S)=ΣnI0nivi2exp(-45π2ci2S2)---(1)

应用逐级切线法获得微孔长度的系列值,c1,c2,……ci……cn

基于赤道扫描曲线的表达式:

Ia(S)=ΣnI0nivi2exp(-45π2ai2S2)---(2)

应用逐级切线法获得微孔直径的系列值,a1,a2,......ai......an

式(1)和式(2)中,Ia(s)和Ic(s)分别为微孔赤道小角散射强度与子午小角散射强度;s=ε/λ为散射矢量;I0为与衍射条件相关的常数;ni为第i种微孔的数量;vi为第i种微孔体积;ai为第i种微孔的直径;ci为炭纤维纵轴方向上微孔的长度;

由式(1)和式(2)可知,对于不同体积微孔来说有:

lims0[lnIai(s)-lnIci(s)]=0---(3)

式(3)中,Iai(0)及Ici(0)分别为第i种孔洞在赤道散射曲线及子午散射曲线上的强度值;依此式确定在ai系列和ci系列中属于同一种微孔的ai及ci的数值以及它们的长径比ci/ai

由式(1)、式(2)和式(3)可计算得到

Vi=Ii(0)ai2ciΣnIi(0)ai2ci---(4)

依式(4)求出不同粒度微孔的体积分数Vi;式中Ii(0)为第i种孔洞在赤道散射和子午散射曲线上s=0处的强度值;

依据式(5)计算每μm3体积中不同粒度微孔的绝对数量Ni:

Ni=Vp×Vi/vi      (5)

式(5)中Vp=1-ρfd002ρgds为孔洞率,ρf及ρg分别为炭纤维及石墨纤维的体密度;d002、ds分别为炭纤维及石墨纤维的(002)面间距;Vi为第i种孔洞的体积分数,vi为第i种洞的体积。

本发明的分析表征方法采用的是小角X射线散射技术。为此最好采用较高功率的X射线小角散射设备,其功率12~18KW为妥。散射强度记录范围,低限应不大于0.08°,高限应达到5°~7°。分析试样为将纤维平行排列呈平板状,厚在0.3mm-0.7mm之间。记录散射强度时按透射方式安排。记录赤道散射曲线(扫描方向与纤维轴垂直)和子午散射曲线(扫描方向与纤维轴平行)。

散射强度曲线要经过背底校正。即,测试参数选择过程,要对赤道散射强度曲线Ia(s),和子午散射强度曲线Ic(s)进行背底校正;具体的是,在实验条件相同的条件下测空气散射强度曲线IK(s),并用样品的I(s)减掉空气的IK(s)。

本发明弥补了现有技术只给出纤维材料中取向纳米微孔长度和微孔直径简略结果的不足,可以得到微孔长度、直径系列值及其相应的长径比,以及不同粒度微孔的体积、体积分数和单位体积内各种粒度微孔的数量。本发明的方法对PAN基炭纤维、沥青基炭纤维、凯芙拉、聚酰亚胺等先进纤维材料同样适用;本发明的方法中,微孔为沿纤维轴取向排列的椭球形微孔,当微孔为长圆柱形或长方锥形取向微孔时,本发明的实验措施、数据处理方法同样适用。

附图说明

图1是本发明实施例1的经背底校正的PAN基炭纤维材料的子午扫描和赤道扫描曲线。

图2是本发明实施例2的经背底校正的PAN基石墨纤维材料的子午扫描和赤道扫描曲线。

具体实施方式

在下列的实施例中,所用的设备是带小角散射附件的日本理学D/max 2550PC 18KW转靶X射线衍射仪,选用配有多层膜镜单色器的Cu辐射和4狭缝光源准直系统,狭缝的宽度分别为:0.04mm、0.03mm、0.1mm、0.25mm。采用步进扫描方式记录散射强度,步长为0.02°,每步计数时间为10秒,扫描范围0.08°~5°。为防止空气和其它寄生散射,需要把样品到探测器间的距离抽成低真空。

在下列的实施例中,所说的公式(1)、(2)、(3)、(4)和(5)就是公式(1)、(2)、(3)、(4)和(5)。所得到的结果均是采用发明内容中的公式(1)、(2)、(3)、(4)和(5)计算得到的。其中n=4,即,i=1、2、3、4;ε=5°;ni为第i种微孔的数量,在运算过程中可约去;vi为第i种微孔体积,即椭球体积;ρf及ρg分别取1.76g/cm3和1.80g/cm3

实施例1对PAN基炭纤维材料中取向纳米微孔形态特征的分析表征

将1K高强型炭纤维(PAN基炭纤维材料)样品平行排列在Φ30mm的圆平板试样架上,厚度为0.5mm。测量它们的赤道扫描(扫描方向与纤维轴垂直)和子午扫描(扫描方向与纤维轴平行),在实验条件完全相同的条件下测空气散射。小角散射强度曲线要经过背底校正如图1所示。图1中,a为PAN基炭纤维材料的赤道扫描小角散射强度曲线,b为PAN基炭纤维材料的子午扫描小角散射强度曲线。

由图1的曲线应用公式(1)~(5)计算所得数据(微孔直径ai、微孔长度ci、微孔长径比ci/ai、微孔体积vi、微孔体积分数Vi和单位体积内微孔数量)列与表2中。

表2PAN基炭纤维中取向纳米微孔形态数据

  孔洞种类i  1  2  3  4  微孔直径ai(nm)  0.9  1.62  8.0  10.9  微孔长度ci(nm)  2.13  5.25  12.5  38.5  微孔长径比ci/ai  2.4  3.2  1.56  3.5  微孔体积vi(nm3)  0.86  7.0  400  2287  微孔体积分数Vi(%)  47.5  51.7  0.7  0.1  单位体积内微孔数量Ni(1/μm3)  8.8×105  2.9×101  1.2×105  6.9×10-1

实施例2材料中取向纳米微孔形态特征的分析表征

将1K高模石墨纤维(PAN基石墨纤维材料)样品平行排列在Φ30mm的圆平板试样架上,厚度为0.5mm。测量它们的赤道扫描(扫描方向与纤维轴垂直)和子午扫描(扫描方向与纤维轴平行),在实验条件完全相同的条件下测空气散射。小角散射强度曲线要经过背底校正如图2所示。图1中,a为高模石墨纤维样品的赤道扫描小角散射强度曲线,b为高模石墨纤维样品的子午扫描小角散射强度曲线。

由图2中曲线应用公式(1)~(5)计算所得数据(微孔直径ai、微孔长度ci、微孔长径比ci/ai、微孔体积vi、微孔体积分数Vi和单位体积内微孔数量)列与表3中。

表3PAN基石墨纤维中取向纳米微孔形态数据

  孔洞种类i  1  2  3  4  微孔直径ai(nm)  1.5  2.25  17.5  26.25  微孔长度ci(nm)  3.5  6.95  11.96  41.78  微孔长径比ci/ai  2.3  3.1  0.68  1.6  微孔体积vi(nm3)  3.9  17.6  1831  14393  微孔体积分数Vi(%)  76.2  21.7  0.9  0.2  单位体积内微孔数量Ni(1/μm3)  3.4×105  9.6×100  2.3×104  2.4×10-1

由实施例1和实施例2所得结果表明,本发明所给出的纳米微孔的形态参数更为精确和全面。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号