首页> 外文学位 >Electro-orientation spectroscopy as a facile way to characterize and sort electrical properties of nanowires/nanotubes.
【24h】

Electro-orientation spectroscopy as a facile way to characterize and sort electrical properties of nanowires/nanotubes.

机译:电取向光谱法是表征和分类纳米线/纳米管电性能的简便方法。

获取原文
获取原文并翻译 | 示例

摘要

One-dimensional materials have attracted growing interest for the past two decades due to their fascinating physical properties. Researchers have focused their investigations on two broad areas: (1) Exploration of the unique physical properties and applications of individual nanowires and nanotubes, and (2) Manipulation of vast ensemble of 1D nanoparticles via various scalable techniques to create macroscopic composites with unique functionality.;For the efficient manipulations of a vast ensemble of 1D nanomaterials, we develop another solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area vertically aligned carbon nanotube (VACNT) composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an AC electric field, and electrophoretically concentrated to one side of the thin film with a DC component to the electric field. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.;For individual nanowires, their physical properties can vary significantly from the bulk. Nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical-characterization methods are time consuming, making the statistical survey of highly variable samples impractical. We propose and demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in AC electric fields of different frequencies. Comparison with direct transport measurements shows that this new technique, electro-orientation spectroscopy (EOS), can quantitatively measure nanowire conductivity over a 6-order-of-magnitude range, 10--5 -- 10 O --1 m--1. With the new EOS method, we statistically characterize the conductivity of a variety of nanowires, and find significant variability in those even from the same wafer. We further integrate this technique into a microfluidic device and automate the electrical-characterization process to enable continuous-flow measurement of the electrical conductivity of an individual nanowire in less than a minute. We make a proof-of-concept demonstration of conductivity-based sorting, as a first step towards enabling the fabrication of functional nanodevices from post-growth sorted and assembled nanowires.
机译:一维材料由于其令人着迷的物理特性在过去的二十年中引起了越来越多的兴趣。研究人员将研究重点放在了两个广泛的领域上:(1)探索单个纳米线和纳米管的独特物理特性和应用,以及(2)通过各种可扩展技术操纵一维纳米粒子的整体,以创建具有独特功能的宏观复合材料。 ;为了有效地处理大量的一维纳米材料,我们开发了另一种基于解决方案的电场辅助方法,作为一种经济高效且可扩展的方法,可以生产大面积垂直排列的碳纳米管(VACNT)复合材料。多壁碳纳米管分散在聚合物基体中,与交流电场对准,然后电泳浓缩到薄膜的一侧,而电场的直流分量。 AC + DC复合场还引入与AC电渗和流体/电极界面的电化学相关的复杂流体运动。我们实验性地探究了这些电动现象背后的电场参数,并证明了通过适当选择工艺参数,能够规模化地生产数量最多为1010个纳米管/ cm2的包含VACNTs的大面积复合材料的能力。该VACNT数密度比以前的电场复合材料高出一个数量级,并且40 nm VACNT的表面积覆盖范围与小直径纳米管的化学气相沉积生长阵列相当。 ;对于单个纳米线,它们的物理特性可能会与整体有很大差异。具有相同成分的纳米线,甚至是在同一批中制造的纳米线,其电导率通常会变化几个数量级。不幸的是,现有的电气表征方法非常耗时,这使得对高度可变的样本进行统计调查变得不切实际。我们提出并演示了一种基于溶液的非接触方法,该方法可基于一维纳米材料在不同频率的交流电场中的瞬态对准行为来有效地测量一维纳米材料的电导率。与直接传输测量的比较表明,这种新技术,即电子方向光谱(EOS),可以在6数量级范围10--5-10 O -1 m--1范围内定量测量纳米线的电导率。 。使用新的EOS方法,我们可以统计地表征各种纳米线的电导率,甚至在同一晶片中也可以发现它们之间的显着差异。我们进一步将该技术集成到微流控设备中,并使电化过程自动化,从而能够在不到一分钟的时间内连续测量单个纳米线的电导率。我们进行了基于电导率的分选的概念验证演示,这是实现从生长后分选和组装的纳米线制造功能纳米器件的第一步。

著录项

  • 作者

    Akin, Cevat.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号