首页> 中国专利> 用于连续侧向结晶的掩膜及用此掩膜结晶非晶硅层的方法

用于连续侧向结晶的掩膜及用此掩膜结晶非晶硅层的方法

摘要

本发明提供一种用于连续侧向结晶的掩膜及用掩膜结晶非晶硅层的方法,所述掩膜包括至少一横向延伸的第一狭缝、至少一横向延伸的第二狭缝、至少一横向延伸的第三狭缝与至少一横向延伸的第四狭缝。其中,第二狭缝位于第一狭缝的延伸方向,并且,第一狭缝的宽度大于第二狭缝的宽度。第四狭缝位于第三狭缝的延伸方向,并且,第四狭缝的宽度大于第三狭缝的宽度。根据本发明,可以局部熔融多晶硅层表面的突起部分,来达到平坦化多晶硅层的目的,以改善后续绝缘层的覆盖效果;并且避免激光照射到多晶硅层表面的凹谷部分,因而可以避免多晶硅层产生破洞。

著录项

  • 公开/公告号CN1909189A

    专利类型发明专利

  • 公开/公告日2007-02-07

    原文格式PDF

  • 申请/专利权人 友达光电股份有限公司;

    申请/专利号CN200510089062.5

  • 发明设计人 孙铭伟;

    申请日2005-08-03

  • 分类号H01L21/20(20060101);H01L21/336(20060101);G02F1/1368(20060101);

  • 代理机构11127 北京三友知识产权代理有限公司;

  • 代理人任默闻

  • 地址 台湾省新竹市科学工业园区

  • 入库时间 2023-12-17 18:12:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2008-07-23

    授权

    授权

  • 2007-04-04

    实质审查的生效

    实质审查的生效

  • 2007-02-07

    公开

    公开

说明书

技术领域

本发明涉及一种掩膜,尤其是一种用于连续侧向结晶工艺的掩膜及用此掩膜结晶非晶硅层的方法。

背景技术

近年来,液晶显示器(Liquid Crystal Display,LCD)由于其轻薄、省电、无辐射的优点,而逐渐取代传统显像管(CRT)显示器,广泛应用于桌上型计算机、个人数字助理器、笔记本电脑、数码相机与移动电话等电子产品中。

请参照图1所示,其为一典型主动矩阵式液晶显示面板的示意图。此液晶显示面板10上具有多个像素元件12呈矩阵排列。每一个像素元件12连接至一个薄膜晶体管(Thin Film Transistor,TFT)14作为开关以控制像素元件12的充放电。此薄膜晶体管14的源极是通过一信号线16电连接至一源极驱动电路(未图示),而其栅极是通过一扫描线18电连接至一扫描驱动电路(未图示)。由此,外界输入的显示信号可以转换为源极驱动电压Vs与扫描驱动电压Vg分别输入各个薄膜晶体管14的源极与栅极以产生画面。

一般而言,受限于玻璃基板所能承受的温度,直接制作于液晶显示面板10上的薄膜晶体管14,是采用非晶硅(Amorphous Silicon)的设计。然而,非晶硅薄膜晶体管(Amorphous Thin Film Transistor,a-TFT)的开关速度、电性效果、以及可靠度,都不足以适应驱动电路所需的高运算速度。因此,驱动电路必须使用多晶硅薄膜晶体管作为开关元件,而导致驱动电路必须制作于硅晶片上,并通过排线连接至液晶显示面板10以控制像素元件12的显示。

随着液晶显示面板的尺寸增大,传统的非晶硅薄膜晶体管所具有的开关速度已逐渐不满足使用。为了提升液晶显示面板的显示效果,同时,使驱动电路得以制作在显示面板上来达到轻薄化的需求,必须设法在玻璃基板上制作多晶硅薄膜晶体管。因此,也必须设法在玻璃基板上制作高品质的多晶硅层。

请参照图2,其为一典型低温多晶硅制备工艺的示意图。如图2中所示,一非晶硅层120形成于一基板100表面,激光在非晶硅层120的表面形成一熔融层122。此熔融层122下方尚未熔融的非晶硅材料作为结晶所需的晶种(Seed)向上成长形成晶粒126。然而,此工艺所能提供的晶粒126尺寸受限于熔融层122的厚度,而熔融层的厚度往往不及一微米,因此,无法有效提升薄膜晶体管的电性效果。

为了提高晶粒的尺寸,请参照图3所示,在一典型侧向结晶(LateralSolidification)工艺中,激光透过掩膜200熔融非晶硅层120的特定区域A,同时,还在此熔融区域A中产生横向的热梯度。此熔融区域A侧边尚未熔融的非晶硅材料作为晶种,往熔融区域A的中央成长以产生较大尺寸的晶粒128。

请参照图4所示,其为一典型用于连续侧向结晶(Sequential LateralSolidification,SLS)工艺的掩膜300的示意图。如图中所示,此掩膜300具有多个第一横向狭缝310成行排列于掩膜300上,多个第二横向狭缝320成行排列于掩膜300上,并且,每一个第一横向狭缝310对齐相邻二第二横向狭缝320间的不透光区。

请参照图5所示,其为一典型连续侧向结晶工艺的示意图。在第一次激光熔融步骤中(如图中虚线所示),激光透过掩膜300上的第一横向狭缝310与第二横向狭缝320熔融非晶硅层。同时请参照图6A,由于液态硅的密度(2.53g/cm3)大于固态硅的密度(2.33g/cm3),因此,熔融硅的表面a落于未熔融硅表面b的下方。硅晶粒沿着热梯度的方向由此熔融区域A1的两侧向中间成长。如图6B所示,由于液态硅的密度大于固态硅的密度,因此,结晶后的硅会在熔融区域A1的中央处产生突起部分c。

在第二次激光照射步骤中,如图5所示,掩膜300向右移动约等同于横向狭缝320长度的距离,使移动后的第一横向狭缝310’对准熔融区域A1之间尚未结晶的部分。以使在第一次激光照射步骤中,相对应于相邻第二狭缝320间而受到遮蔽的非晶硅层,在第二次激光照射步骤中受到激光照射熔融。同时请参照图6C所示,掩膜移动之后,原先对准第二狭缝320而熔融的部分非晶硅层120(即图6A中的熔融区域A1)受到掩膜300的遮蔽,而原先受到遮蔽的部分A2受到激光照射熔融。同样的,如图6D所示,由于液态硅的密度大于固态硅的密度,因此,在熔融区域A2的侧边处将形成凹谷部分d,而在熔融区域A2的中央处将产生突起部分c。

此形成于多晶硅表面的突起将影响后续绝缘层的覆盖效果,除了可能造成漏电流上升外,甚至可能导致绝缘层的击穿。为了降低此突起的高度,以避免后续工艺的困难,一典型的方法是利用激光全面熔融多晶硅层的表面,使多晶硅层再流动(re-flow)以达到平坦化的目的。然而,此方法也同时也会熔融凹谷部分,而容易造成聚块作用(agglomeration)导致多晶硅层的破洞。

于是,本发明提供一种应用于连续侧向结晶的掩膜,可以有效降低突起的高度,并且避免聚块作用的导致多晶硅层的破洞。

发明内容

本发明的目的在于降低连续侧向结晶工艺形成于多晶硅层表面的突起,以改善后续工艺的覆盖效果。

为实现所述的目的,本发明提供一种用于连续侧向结晶工艺的掩膜,此掩膜包括:至少一横向延伸的第一狭缝、至少一横向延伸的第二狭缝、至少一横向延伸的第三狭缝与至少一横向延伸的第四狭缝。其中,第二狭缝位于第一狭缝的延伸方向,并且,第一狭缝的宽度大于第二狭缝的宽度。第四狭缝位于第三狭缝的延伸方向,并且,第四狭缝的宽度大于第三狭缝的宽度。

在本发明的一实施例中,第三狭缝是沿着第一狭缝的长边,排列于第一狭缝之侧。

在本发明的一实施例中,第三狭缝是沿着第二狭缝的长边,排列于第二狭缝之侧。

此外,本发明还提供一种结晶非晶硅层的方法。此方法至少包括下列步骤:(a)提供一基板。(b)制作一非晶硅层于基板上。(c)将一掩膜对准基板;此掩膜具有多个横向延伸的狭缝,包括一第一狭缝、一第二狭缝、一第三狭缝与一第四狭缝;其中,第二狭缝位于第一狭缝的延伸方向上,第三狭缝沿着第一狭缝的长边并排于第一狭缝之侧;第四狭缝位于第三狭缝的延伸方向上;并且,第一狭缝的宽度大于第二狭缝的宽度,第四狭缝的宽度大于第三狭缝的宽度。(d)通过此掩膜熔融上述非晶硅层,以在非晶硅层中产生多个第一结晶区域,对应至掩膜上的第一狭缝与第四狭缝。(e)横向移动掩膜或基板,使第二狭缝与第三狭缝对准上述第一结晶区域的中央突起部分。(f)通过掩膜熔融非晶硅层,以降低第一结晶区域的中央突起部分的高度,并且在非晶硅层中产生多个第二结晶区域,对应至掩膜上的第一狭缝与第四狭缝。

根据本发明,可以局部熔融多晶硅层表面的突起部分,来达到平坦化多晶硅层的目的,以改善后续绝缘层的覆盖效果;并且避免激光照射到多晶硅层表面的凹谷部分,因而可以避免多晶硅层产生破洞。

附图说明

图1为一典型主动矩阵式液晶显示面板的示意图;

图2为一典型低温多晶硅制备工艺的示意图;

图3为在一典型侧向结晶(Lateral Solidification)工艺;

图4为一典型用于连续侧向结晶(Sequential Lateral Solidification,SLS)工艺的掩膜的示意图;

图5为一典型连续侧向结晶工艺的俯视示意图;

图6A至图6D为一典型连续侧向结晶工艺的剖面示意图;

图7A为本发明用于连续侧向结晶工艺的掩膜的一较佳实施例的俯视图;

图7B为使用图7A的掩膜进行连续侧向结晶工艺的俯视示意图;

图7C为使用图7A的掩膜形成于非晶硅层中的多晶硅结构的示意图;

图8A至图8C为本发明连续侧向结晶工艺的剖面示意图;

图9A为本发明用于连续侧向结晶工艺的掩膜另一较佳实施例的俯视图;

图9B为使用图9A的掩膜进行连续侧向结晶工艺的俯视示意图;

图9C为使用图9A的掩膜形成于非晶硅层中的多晶硅结构的示意图;

图10A为本发明第二狭缝一较佳实施例的示意图;

图10B为本发明第二狭缝另一较佳实施例的示意图。

主要附图标号说明:

液晶显示面板10                  像素元件12

薄膜晶体管14                    信号线16

扫描线18                        非晶硅层120

基板100                         熔融层122

晶粒126、128                    掩膜200、300

第一狭缝310、310’                              第二狭缝320、320’

掩膜400、500                    第一狭缝410、410’、510、510’、510”

第二狭缝420、420’、520、520’、520”、420a、420b

第三狭缝430、430’、530,530’、530”、430a、430b

第四狭缝440、440’、540、540’、540”

中央突起部分c                   第一结晶区域A1

第二结晶区域A2                  透光区域422、424、432、434

具体实施方式

关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。

请参照图7A,其为本发明用于连续侧向结晶工艺的掩膜400一较佳实施例的俯视图。如图中所示,此掩膜400包括至少一横向延伸的第一狭缝410、至少一横向延伸的第二狭缝420、至少一横向延伸的第三狭缝430与至少一横向延伸的第四狭缝440。

各个第一狭缝410纵向排列于掩膜400上。各个第二狭缝420纵向排列于掩膜400上,并且,分别位于第一狭缝410的延伸方向上。各个第三狭缝430纵向排列于掩膜400上。各个第四狭缝440纵向排列于掩膜400上,并且,分别位于第三狭缝430的延伸方向。第三狭缝430沿着第一狭缝410的长边,排列于第一狭缝410之侧。也就是,第三狭缝430位于相邻二第一狭缝410之间。第二狭缝420沿着第四狭缝440的长边,排列于第四狭缝440之侧。也就是,第二狭缝420位于相邻二第四狭缝440之间。

请参照图8A至图8C所示,其为使用图7A的掩膜进行连续侧向结晶工艺的示意图。首先,提供一基板100并制作一非晶硅层120于此基板100上。随后,如图8A所示,将本发明的掩膜400对准基板100,并且,透过此掩膜400以激光光源熔融基板100上的非晶硅层120。此熔融过程在非晶硅层120中产生多个第一结晶区域A1,分别对应至掩膜上的第一狭缝410与第四狭缝440(请一并参照图7B的虚线部分)。

接下来,如图8B所示,横向移动掩膜400或基板100,使掩膜400上的第二狭缝420与第三狭缝430对准上述第一结晶区域A1的中央突起部分c(请一并参照图7B的实线部份)。然后,透过掩膜400以激光光源熔融非晶硅层120。在此熔融过程中,激光是透过第二狭缝420与第三狭缝430熔融第一结晶区域A1的中央突起部分c;同时,激光亦在此非晶硅层中产生多个第二结晶区域A2对应至第一狭缝410与第四狭缝440。因此,如图8C所示,经过此熔融过程,可以有效且局部的降低中央突起部分的高度(如图中B3所示)。同时请参照图7C所示,经过连续横向移动掩膜400或基板100,即可在非晶硅层的表面全面形成一多晶硅层。

请参照图8B所示,为了控制激光的熔融范围,使之局限于第一结晶区域A1的中央突起部分c,以避免对第一结晶区域A1的其它部分产生不利的影响。本发明的第一狭缝410的宽度至少必须大于第二狭缝420的宽度,且第四狭缝440的宽度至少必须大于第三狭缝430的宽度。又,就本发明的一较佳实施例而言,第一狭缝410的宽度至少达到第二狭缝420的宽度的5倍,且第四狭缝440的宽度至少达到第三狭缝430的宽度的5倍。

其次,为了确保形成于非晶硅层的晶粒长度均匀,第一狭缝410的尺寸与第四狭缝440的尺寸最好相同,而第二狭缝420的尺寸与第三狭缝430的尺寸也最好相同。同时,第二狭缝420的中心线必须对准第一狭缝410的中心线,而第三狭缝430的中心线必须对准第四狭缝440的中心线,以确保掩膜横向移动后,第二狭缝420与第三狭缝430可以对准第一结晶区域A1的中央突起部分c。此外,第四狭缝440的宽度必须大于相邻二第一狭缝410的间距,而第一狭缝410的宽度必须大于相邻二第四狭缝440的间距,以确保此非晶硅层的全部表面均受有激光的照射,避免非晶硅区域残留。

此外,为了避免激光光源透过第二狭缝420与第三狭缝430照射至非晶硅层的能量过高,而影响中央凸起部分周围的平坦区域B2、B1(请同时参照图8C)。请参照图10A所示,此第二狭缝420a可以由多个透光区域422横向排列而构成。激光通过这些透光区域422后,通过绕射作用,使光能量的分布范围如同激光通过图7A的第二狭缝420一般,只是通过透光区域422的总光能量较小。也因此,在同一道激光熔融步骤中,激光通过此实施例的第二狭缝420a照射至非晶硅层的单位面积能量,必然小于激光通过第一狭缝410照射至非晶硅层的单位面积能量。又,请参照图10B所示,此第二狭缝420b也可以由多个狭长的透光区域424纵向排列而成,以使激光通过此狭缝420b照射至非晶硅层的单位面积能量小于激光通过第一狭缝410照射至非晶硅层的单位面积能量。并且,前述应用于第二狭缝420a,420b的设计,亦可应用于第三狭缝430a与第三狭缝430b。

就连续侧向结晶工艺而言,掩膜上的图案通常经过一定的缩小比例x,才投影于非晶硅层上。又,如所8C示,透过此连续侧向结晶工艺所形成的晶粒长度,略大于第一结晶区域A1宽度的一半。因此,掩膜上第一狭缝410的宽度,至少是所欲长成的晶粒长度L除以掩膜投影缩小比例x的2倍。而第四狭缝440的宽度也至少是所欲长成的晶粒长度L除以掩膜投影缩小比例x的2倍。进一步来说,形成的晶粒长度是约等于第一狭缝410(或第四狭缝440)宽度的一半与相邻二第一狭缝410(或相邻二第四狭缝440)间距之和,再乘以掩膜投影缩小比例x。

请参照9A图所示,其为本发明用于连续侧向结晶工艺的掩膜500另一较佳实施例的俯视图。相对于图7A的实施例,本实施例的第二狭缝520位于第一狭缝510的左侧,第三狭缝530位于第四狭缝540的左侧。并且,第三狭缝530沿着第二狭缝520的长边,排列于第二狭缝520之侧。

请参照图9B与图9C所示,其为使用图9A的掩膜500进行连续侧向结晶工艺中,掩膜500的移动以及形成于非晶硅层中的多晶硅结构的示意图。相对于图8A至图8C的连续侧向结晶工艺,可区分为两道熔融步骤重复进行(请参照图7B的虚线部分与实线部分);本实施例的工艺区分为三道熔融步骤(分别对应于图9B的虚线部份、实线部份与填满区域部分)。在第一道熔融步骤中,激光光源透过第一狭缝510与第四狭缝440形成多个第一结晶区域。在第二道熔融步骤中,激光光源透过第二狭缝520’,熔融对应至第一狭缝510的第一结晶区域的中央突起部分。在第三道熔融步骤中,激光光源才能透过第三狭缝530”,熔融对应至第四狭缝540的第一结晶区域的中央突起部分。

值得注意的是,虽然本实施例所使用的掩膜500不同于图7A的掩膜400,但是,请参照图9C所示,透过本实施例的掩膜所形成的多晶硅结构,与图7C所示,使用图7A的掩膜所形成的多晶硅结构,并无明显差异。

通过传统侧向结晶工艺所制作的多晶硅层120,如图6D所示,无可避免的会在多晶硅层120的表面会形成明显突起c。此突起c将影响后续绝缘层的覆盖效果,除了可能造成漏电流上升外,甚至可能导致绝缘层的击穿。相比之下,如图8B与图8C所示,使用本发明的掩膜400所进行的侧向结晶工艺,可以局部熔融多晶硅层120表面的突起部分c,来达到平坦化多晶硅层120的目的,以改善后续绝缘层的覆盖效果。

此外,传统方法为了解决此问题,必须利用激光全面熔融多晶硅层120的表面,使多晶硅材料再流动(re-flow)以降低突起c的高度。然而,使用此种方法,激光必然会同时照射到多晶硅层120表面的凹谷部分d,而容易因聚块作用的产生导致多晶硅层120产生破洞。相比之下,使用本发明的掩膜,可以局部熔融多晶硅层120表面的突起部分c,避免激光照射到多晶硅层表面的凹谷部分d,因而可以避免多晶硅层120产生破洞。

以上所述利用较佳实施例详细说明本发明,而非限制本发明的范围,而且本领域的技术人员皆能明了,适当而作些微的改变及调整,仍将不脱离本发明的要义所在,均应该包含在本发明的精神和保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号