首页> 中国专利> 一种有效吸氢量高的钛-钒基储氢合金

一种有效吸氢量高的钛-钒基储氢合金

摘要

本发明为吸氢量高的Ti-V基储氢合金。合金组成通式为Ti

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-12-28

    未缴年费专利权终止 IPC(主分类):C22C14/00 授权公告日:20070905 终止日期:20101024 申请日:20051024

    专利权的终止

  • 2008-12-03

    专利实施许可合同的备案 合同备案号:2008330000187 让与人:中国科学院上海微系统与信息技术研究所 受让人:宁波申江科技股份有限公司 发明名称:一种有效吸氢量高的钛-钒基储氢合金 授权公告日:20070905 许可种类:独占许可 备案日期:2008.8.18 合同履行期限:2008.6.26至2013.6.25合同变更 申请日:20051024

    专利实施许可合同的备案

  • 2007-09-05

    授权

    授权

  • 2006-05-24

    实质审查的生效

    实质审查的生效

  • 2006-03-29

    公开

    公开

说明书

技术领域:

本发明涉及一种Ti-V基储氢合金。更确切地说所涉及的储氢合金具有有效吸氢量高,放氢平台压适中的特点,具有实用价值。该合金在燃料电池氢源、氢气的存储和运输等方面将会有广泛的应用前景。属于储氢合金领域。

背景技术:

储氢合金是本世纪70年代发展起来的一种新型绿色功能材料,在一定条件下具有吸、放氢性能,其特点是储贮氢量大、无污染、安全可靠、可重复使用等。

储氢合金按各类合金中主要吸氢元素的不同可划分为稀土系、Ti系、Mg系和V系固溶体储氢合金。稀土系的典型代表是LaNi5,最大吸氢量仅1.4wt%;Ti系以Ti-Fe合金为代表,最大吸氢量为1.8wt%左右;Mg系的典型合金式Mg2Ni,最大吸氢量可达3.6wt%左右,但该合金要200℃以上才能吸放氢,而且合金动力学性能很差。

钒系固溶体合金中的Ti-V基储氢合金是最近发展起来的新一代储氢合金,这类合金以BCC相为主相,另外还包含部分的C14 Laves相或TiNi相等。该类合金由于其较大的吸氢容量正受到各国研究者的重视。Cho及其同事们开发出来的Ti0.16Zr0.05Cr0.22V0.57合金最大吸氢量达到3.55wt%[S.W.Cho,C.S.Han,C.N.Park,E.Akiba.J.Alloys Comp.,1999(289):244-250],Seo等报道的V0.68Ti0.20Fe0.12合金最大吸氢量达到3.6wt%[Chan-Yeol Seo,Jin-Ho Kim,Paul S.Lee,Jai-YoungLee.J.Alloys Comp.,2003(348):252-257],余学斌等开发出来的Ti0.4V0.4Cr0.1Mn0.1合金最大吸氢量更是高达4.2wt%[余学斌,吴铸.高等化学学报,2002(25):351-353]。然而储氢瓶用储氢合金的放氢过程一般在常压附近,在所定义合金PCT(压力-成分-温度)放氢曲线上高于1atm的部分为有效吸氢量的情况下,上述报道的合金其有效吸氢量分别只有0.17wt%、0.35wt%和0.2wt%。存储在该类合金中的氢在水浴情况下很大一部分放不出来,而且其中大多数合金的放氢平台压较低,这些问题严重制约了该类合金的实际应用。

发明目的:

本发明的目的在于提供一种有效吸氢量高的钛-钒基储氢合金,开发一类放氢平台压适中、有效吸氢量较大的储氢合金,以克服Ti-V基储氢合金现有技术的不足。

本发明所述的储氢合金的通式组成为TiaVbCrcMndMe100-a-b-c-d,式中0<a≤15,20≤b≤35,15≤c≤30,40≤d≤55,85≤a+b+c+d≤100;a,b,c,d均为原子百分含量。当a+b+c+d<100时,合金组分中Me至少为Fe、V4Fe中的任意一种或者两者的组合,合金是以BCC相为主、包含C14 Laves相的两相共存结构;当a+b+c+d=100时则合金形成单一的BCC相TiaVbCrcMnd合金中a、b、c、d的范围如上所述。

本发明所述合金可通过如下方法制备:纯度均高于99.5%的单质元素或中间合金按比例称取50g,然后在磁悬浮高频感应炉中熔炼。为保证合金的均匀性及避免在空气中氧化,样品在氩气保护下反复熔炼3~4次。对于易挥发的成分例如Mn在配料时应适当过量。

本发明开发的合金有效吸氢量最高可达1.84wt%。合金放氢平台压处于1atm~5atm之间。由于较大的有效吸氢量、适中的平台压,合金具有实用价值,并将在燃料电池氢源、氢气的存储和运输等方面有广泛的应用前景。

附图说明:

图1为Ti5Mn45Cr20V30合金的X射线衍射谱(a)和扫描电镜显微结构分析图(b)。

图2为Ti5Mn45Cr20V30合金在75℃时的放氢曲线图。图中横坐标为氢的质量百分含量,用wt%表示,纵坐标为压力P(atm)。

图3为Ti7.5Mn45Cr17.5V20(V4Fe)Fe5合金的X射线衍射谱(a)和扫描电镜显微结构分析图(b)。

图4为Ti7.5Mn45Cr17.5V20(V4Fe)Fe5合金在75℃时的放氢曲线图。图中横坐标为氢的质量百分含量,用wt%表示,纵坐标为压力P(atm)。

图5为Ti10Mn45Cr15V25Fe5合金在75℃时的放氢曲线图。图中横坐标为氢的质量百分含量,用wt%表示,纵坐标为压力P(atm)。

图6为Ti12.5Mn40Cr17.5V20(V4Fe)2合金在75℃时的放氢曲线图。图中横坐标为氢的质量百分含量,用wt%表示,纵坐标为压力P(atm)。

具体实施方式:

下面通过具体实施例进一步阐述本发明的实质性和显著的进步,但本发明决非仅局限于实施例:

实施例1:设计合金组分为Ti5Mn45Cr20V30,实验所用原料的纯度均高于99.5%,配取50g样品在磁悬浮高频感应炉中熔炼。为保证合金的均匀性及避免在空气中氧化,样品在氩气保护下反复熔炼3~4次。图1分别为该合金的X射线衍射谱和扫描电镜显微结构分析图,可以看出该合金是单一的BCC相。取3g机械破碎至80目进行吸放氢测试,图2为该合金的放氢曲线,可以看到,在75℃时该合金的有效吸氢量为1.70wt%,放氢平台压为1.77atm。

实施例2:设计合金组分为Ti7.5Mn45Cr17.5V20(V4Fe)Fe5,实验所用原料的纯度均高于99.5%,配取50g样品在磁悬浮高频感应炉中熔炼。为保证合金的均匀性及避免在空气中氧化,样品在氩气保护下反复熔炼3~4次。图3分别为该合金的X射线衍射谱和扫描电镜显微结构分析图,可以看出该合金是以BCC相为主、包含C14 Laves相的两相共存结构。取3g机械破碎至80目进行吸放氢测试,图4为该合金的放氢曲线,可以看到,在75℃时该合金的有效吸氢量为1.73wt%,放氢平台压为3.49atm。

实施例3:设计合金组分为Ti10Mn45Cr15V25Fe5,实验所用原料的纯度均高于99.5%,配取50g样品在磁悬浮高频感应炉中熔炼。为保证合金的均匀性及避免在空气中氧化,样品在氩气保护下反复熔炼3~4次。图3分别为该合金的X射线衍射谱和扫描电镜显微结构分析图,可以看出该合金是以BCC相为主、包含C14 Laves相的两相共存结构。取3g机械破碎至80目进行吸放氢测试,图5为该合金的放氢曲线,可以看到,在75℃时,该合金的有效吸氢量为1.80wt%,放氢平台压为2.87atm。

实施例4:设计合金组分为Ti12.5Mn40Cr17.5V20(V4Fe)2,实验所用原料的纯度均高于99.5%,配取50g样品在磁悬浮高频感应炉中熔炼。为保证合金的均匀性及避免在空气中氧化,样品在氩气保护下反复熔炼3~4次。X射线衍射谱和扫描电镜显微结构分析图显示该合金是以BCC相为主、包含C14 Laves相的两相共存结构。取3g机械破碎至80目进行吸放氢测试,图6为该合金的放氢曲线,可以看到,在75℃时合金的有效吸氢量为1.84wt%,放氢平台压为2.31atm。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号