首页> 中国专利> 具有斐波纳契数列的电荷泵

具有斐波纳契数列的电荷泵

摘要

本发明揭示一种电荷泵(10),其包括交替充电和串联耦合的复数个电容器(16、32、48、24、40、56)。当串联耦合时,一给定电容器两端的电压将等于其负极端子上的电压加上前一电容器两端的电压。每一电荷泵级(A-F)均设置用于实现遵循斐波纳契数列的电压升高。

著录项

  • 公开/公告号CN1701495A

    专利类型发明专利

  • 公开/公告日2005-11-23

    原文格式PDF

  • 申请/专利权人 桑迪士克股份有限公司;

    申请/专利号CN03824682.1

  • 发明设计人 若尔-安德里安·瑟尼;

    申请日2003-09-19

  • 分类号H02M3/07;

  • 代理机构11287 北京律盟知识产权代理有限责任公司;

  • 代理人刘国伟

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 16:46:38

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-09-29

    未缴年费专利权终止 IPC(主分类):H02M 3/07 专利号:ZL038246821 申请日:20030919 授权公告日:20101110

    专利权的终止

  • 2016-07-20

    专利权人的姓名或者名称、地址的变更 IPC(主分类):H02M3/07 变更前: 变更后: 申请日:20030919

    专利权人的姓名或者名称、地址的变更

  • 2013-02-13

    专利权人的姓名或者名称、地址的变更 IPC(主分类):H02M3/07 变更前: 变更后: 申请日:20030919

    专利权人的姓名或者名称、地址的变更

  • 2012-05-02

    专利权的转移 IPC(主分类):H02M3/07 变更前: 变更后: 登记生效日:20120322 申请日:20030919

    专利申请权、专利权的转移

  • 2010-11-10

    授权

    授权

  • 2006-01-18

    实质审查的生效

    实质审查的生效

  • 2005-11-23

    公开

    公开

查看全部

说明书

技术领域

本发明大体而言涉及电荷泵领域,更具体而言涉及一种设置用于实现遵循斐波纳契数列的电压升高的电荷泵。

背景技术

电荷泵使用一转换过程来提供一高于其DC输入电压的DC输出电压。通常,一电荷泵将有一电容器耦合至一输入与一输出之间的开关。在一时钟半周期期间,即充电半周期期间,电容器并联耦合至该输入以充电至输入电压。在一第二时钟周期期间,即转移半周期期间,已充电电容器与输入电压串联耦合以提供一两倍于输入电压电平的输出电压。该过程如图1a和图1b所示。在图1a中,使电容器5与输入电压VIN并联排列以说明该充电半周期。在图1b中,则使已充电电容器5与输入电压串联排列以说明该转移半周期。因此,如在图1b中所见,已充电电容器5的正极端子将相对于地为2*VIN

上述一般性电荷泵提供一不超过输入电压VCC两倍的输出电压。美国专利第5,436,587号揭示一具有一电压加法级后随复数个电压倍增级的电荷泵,其中各级的级联方式可获得大大高于两倍VCC的输出电压,该专利的内容以引用方式并入本文中。电压加法级是每一输出电压信号仅使用一个电容器,而电压倍增级则每一输出电压信号需要两个电容器,因此增加了制造成本。然而,以电压加法级取代所有的电压倍增级会大大增加串联电阻。

因此,所属技术领域中需要每一级仅需一个电容器的有效的电荷泵。

发明内容

根据本发明的一方面,一电荷泵包括复数个电压级,其中每一电压级包括一电容器。在工作期间,所述电荷泵对所述电容器充电并与所述电容器串联耦合,以使一第一电压级内已充电电容器的正极端子耦合至一第二电压级内已充电电容器的一负极端子,依此类推。所述电荷泵对所述电容器充电的方式使得,对于一大于1的整数k,第k个电压级内电容器两端的电压大致等于其负极端子上的电压加上第(k-1)个电压级内电容器两端的电压。

根据本发明的另一方面,一种产生电压的方法包括一如下过程:交替地对复数个电容器充电,然后串联耦合所述复数个已充电电容器。所述已充电电容器串联耦合的方式使所述复数个电压级内一第一电容器的正极端子耦合至所述复数个电压级内一第二电容器的负极端子,依此类推。电容器的充电方式使得,对于一大于1的整数k,电容器两端的电压大致等于其负极端子上的电压加上第(k-1)个电容器两端的电压。

以下说明和图式揭示本发明的其它方面及优点。

附图说明

通过查阅下列图式可以更好地了解本发明的不同方面和特征,其中:

图1a为一一般性电荷泵中充电半周期的简化电路图。

图1b为一一般性电荷泵中转移半周期的简化电路图。

图2为一根据本发明一实施例的电荷泵的电路图,该电荷泵具有根据一斐波纳契数乘法设置的电压量。

图3为一图解说明图2所示电荷泵中电容器的串联耦合半周期的简化电路图。

图4为一对图2所示电荷泵的修改,其使在最后电压级充电期间不出现二级管压降。

图5为一图解说明图4所示电荷泵中电容器的串联耦合半周期的简化电路图。

具体实施方式

本发明提供一可每级使用一个电容器的电荷泵。每一级均以一整数乘以电源电压,以使每一级所产生的电压信号与整数倍增可遵循斐波纳契数列的一部分。在一斐波纳契数列中,第k个数(第一个和第二个数都等于1,因而除外)等于第(k-1)与第(k-2)个数之和。因此,一斐波纳契数列如下:1,1,2,3,5,8,13,21,等等。

现在参见图2,其显示一具有六个级A至F的实例性电荷泵10。这些级可根据其接收哪一时钟信号来加以组织。级A至C接收一时钟信号CLK,而级D至F接收一互补时钟信号CLKBAR。这两个时钟信号均可在地电平(LOW(低))与输入电源电压VCC(HIGH(高))之间振荡。或者,时钟信号的HIGH状态可不同于VCC。重要的是,该HIGH状态的振幅须足以导通其所控制的晶体管。不失一般性地,可假定CLK信号始于一为LOW的第一时钟半周期,接着是一为HIGH的第二时钟半周期,再接着是一为LOW的第三时钟半周期,依此类推。这样,在奇数编号的时钟半周期内,CLK信号为LOW,而在偶数编号的时钟半周期内,CLK信号为HIGH。类似地,CLKBAR信号在奇数编号的时钟半周期内,为HIGH,而在偶数编号的时钟半周期内为LOW。

每一级的结构可以相同。举例而言,在级A内,一p-mos FET12的源极与一n-mos FET 14的漏极耦合至一电容器16的负极端子。电容器16的正极端子耦合至一n-mos FET 18的源极。在级B内,一p-mos FET 20的源极和一n-mosFET 22的漏极耦合至一电容器24的负极端子。电容器24的正极端子耦合至一n-mos FET 26的源极。在级B内,一p-mos FET 28的源极与一n-mos FET 30的漏极耦合至一电容器32的负极端子,电容器32的正极端子耦合至一n-mos FET34的源极。在级E内,一p-mos FET 36的源极与一n-mos FET 38的漏极耦合至一电容器40的负极端子,电容器40的正极端子耦合至一n-mos FET 42的源极。在级C内,一p-mos FET 44的源极与一n-mos FET 46的漏极耦合至一电容器48的负极端子。电容器48的正极端子耦合至一n-mos FET 50的源极。最后,在级F内,一p-mos FET 52的源极与一n-mos FET 54的漏极耦合至一电容器56的负极端子。电容器56的正极端子耦合至一n-mos FET 58的源极。

级A至C内的电容器16、32和48将在CLK信号的奇数半周期内串联耦合。在该时间期间,来自串联耦合电容器的电压用于对级E至F内的电容器24、40和56充电。类似地,级D至F内的电容器24、40和56将在CLK信号的偶数半周期内串联耦合。在该等偶数半周期期间,来自串联耦合电容器的电压用于对级A至C内的电容器16、32和48充电。

图3图解说明串联耦合及充电半周期。为清楚起见,仅显示每一电压级内的电容器,其由相应字母A至F标识。在CLK信号的偶数半周期期间,级A至C内的电容器分别充电到VCC、3*VCC和8*VCC伏特。在CLK信号的奇数半周期期间,该等已充电电容器串联耦合,且电压级A内电容器的负极端子充电到VCC。结果,级A至C内的电容器正极端子上的电压将分别为2*VCC、5*VCC和13*VCC伏特。在该奇数半周期期间,这些相同的电压用于对级D至F内的电容器充电。因此,级D内的电容器将充电到2*VCC,级E内的电容器将充电到5*VCC,级F内的电容器将充电到13*VCC伏特(减去一二极管压降,如下文所解释)。

类似地,在CLK信号的一偶数半周期期间,级D至F内的已充电电容器串联耦合。级D中的已充电电容器的负极端子充电到VCC伏特。结果,级D至F内电容器正极端子上的电压将分别为3*VCC、8*VCC和21*VCC伏特。然后,按下述方式使用这些电压对其余的级充电。级A为“起始”级,因而并不自级C至F接收充电电压,而是充电到VCC伏特。然而,来自级D的电压将级B内的电容器充电到3*VCC伏特,来自级E的电压将级C内的电容器充电到8*VCC伏特。

注意当该等级串联耦合时由此产生的电压所遵循的形式。为清楚起见,将忽略VCC项,从而将VCC标记为1,将,将2*VCC标记为2,依此类推。从级A的电容器负极端开始,该节点为1。级A内电容器两端的电压提供另一个1。级A内电容器正极端子上的电压提供一2。继续注意(对每一电容器而言按顺序)电容器负极端上的电压、电容器两端的电压及电容器正极端上的电压,级A至C出现下列形式:1,1,2,3,5,8和13。该数列形成一如上所述斐波纳契数列的一部分。所观察到的级D至F的电压与此相同:1,2,3,5,8,13和21。该数列也形成斐波纳契数列的自第二个“1”开始的一部分。

这些电压以下列形式产生。重新参见图2,在级A的CLK信号的奇数半周期(在该信号为LOW时)期间,n-mos晶体管14处于关断(OFF)状态,而p-mos晶体管12处于导通(ON)状态。因此,电容器16的负极端子将充电到VCC。假定电容器16先前已充电到VCC,则电容器16的正极端子上的电压信号V21将大致等于2*VCC。这样标记电压信号21是因为其在CLK信号的奇数半周期内等于2*VCC而在CLK信号的偶数半周期内等于1*VCC。类似信号也将遵循类似的命名法,以使第一个数等于在CLK信号的奇数半周期内的VCC倍数、第二个数等于在偶数半周期内的倍数。尽管电容器16已充电到VCC,但所属领域的技术人员应了解,该电荷将会因电荷共享、电容耦合、及/或泄漏和其他相关过程而丢失。所以,本文使用的“大致等于”一给定电压电平应理解为包括任何此等损耗。在级D内,互补时钟信号CLKBAR在CLK信号的奇数半周期内为HIGH,从而导通n-mos FET 22并关断p-mos FET 20。因此,电容器24的负极端子上的电压信号V01将被拉向地电平。类似地,级E和F内的电压信号V03和V08也将接地。

电压信号V01又控制级B内p-mos晶体管28的栅极,从而导通该晶体管并将电容器32的负极端子上的信号V20拉至一2*VCC的电压。假定电容器32先前已充电到3*VCC,则电容器32正极端子上的电压信号V53将大致等于5*VCC。在级C内,为LOW的电压信号V03将导通p-mos FET 44,从而容许由电压信号V53将电容器48的负极端子上的电压信号V50充电到5*VCC-在n-mos FET 46已因CLK信号为LOW状态而关断的条件下。假定电容器48已充电到8*VCC,则电容器48的正极端子上的电压信号V13-8将大致等于13*VCC。照此方式,分别位于级A、B和C内的电容器16、32和48在CLK信号的奇数半周期内串联耦合。

如参照图3所论述,来自这些级串联耦合的电容器的电压用于在CLK信号的奇数半周期内对其余级内的电容器充电。举例而言,在级D内,n-mos FET 26在其漏极处接收电压信号V21。由于该FET在其栅极处接收电压信号V50,所以其将导通,从而将电容器24相对于其接地的负极端子充电到2*VCC。此又使电压信号V23也将充电到2*VCC。类似地,在级E内,由于n-mos FET在其栅极处接收电压信号V13-8,所以其将导通,从而容许电压信号V53将电容器40相对于其接地的负极端子充电到5*VCC。此又使电压信号V58也将充电到5*VCC。最后,在级F内,二极管连接的n-mos FET 58将由电压信号V13-8导通,从而允许该电压信号将电容器56相对于其接地的负极端子充电到13*VCC(减去二极管压降)。此又使电压信号V13-21也将充电到13*VCC。

按照类似的方式,在CLK信号的偶数半周期内,分别位于级D、E和F内的电容器24、40和56也将串联耦合。在该等偶数半周期期间,CLKBAR信号将为LOW,从而关断n-mos FET 22、38和54并防止串联耦合的电容器相应的负极端子接地。同时,由于CLK信号为HIGH状态,因而分别位于级A、B和C内的n-mos FET 14、30和46将导通,从而将电容器16、32和48相应的负极端子上的信号V10、V20和V50拉至地电平。在级D内,p-mos FET 20将导通,从而允许电源电压VCC将电容器24负极端子上的信号V01充电到VCC。由于电容器24已充电到2*VCC,因而电容器24正极端子上的电压信号V23此时大致等于3*VCC。由于控制其栅极的信号V50为LOW状态,因而晶体管26将关断,以防止电压信号V23通过该晶体管往回放电。此又使电压信号V23耦合至级E内的p-mos FET 36的源极。因为该晶体管在其栅极处接收此时为LOW的电压信号V20,所以p-mos FET 36将导通,以将电容器40负极端子上的信号V03充电到3*VCC。在电容器40早已充电到5*VCC的条件下,电容器40的正极端子上的电压信号V58将大致等于8*VCC。电压信号V58将不通过n-mos FET42往回放电,这是因为其因电压信号V13-8为8*VCC电压而关断。此又使电压信号V58耦合至级F内p-mos FET 52的源极。由于该晶体管在其栅极处接收电压信号V53的LOW状态,所以其将导通,从而将电容器56的负极端子上的电压信号V08充电到8*VCC。由于电容器56已充电到13*VCC(减去晶体管58上的二极管压降),所以电容器56正极端子上的电压信号V13-21将大致等于21*VCC。在二极管连接的晶体管58的源极将处于一高于其漏极的电位的条件下,其将关断,以防止电压信号V13-21通过该晶体管往回放电。

如参照图3所论述,来自级D和E内串联耦合的电容器的电压用于在CLK信号的偶数半周期期间对级B和C内的电容器充电。作为起始级的级A此时按下述方式使用电源电压VCC对其电容器16充电。电压信号V08的8*VCC电位耦合至n-mos晶体管18的栅极,从而将其导通并将电压信号V12拉至VCC、将电容器16相对于其接地端子充电到VCC。类似地,电压信号V08也将导通级B内的n-mos FET 34,从而允许电压信号V23将电容器32相对于其接地端子充电到3*VCC并将电压信号V53也拉至3*VCC。最后,电压信号V13-21导通级C内的n-mos FET 50,从而允许电压信号V58将电容器48充电到8*VCC并将电压信号V13-8也拉至8*VCC。注意,在偶数和奇数时钟半周期二者期间,p-mos FET 28、36、44和52与n-mos FET 18、26、34、42和50的所有栅极信号均是自产生的。不过,级F内的n-mos FET 58带来一个问题。这里,电容器56在CLK信号的奇数半周期期间将充电到13*VCC。因此,为在该充电过程期间使n-mos FET 58保持导通,需要栅极电压为13*VCC加上阈电压。但此时,13*VCC的电压是从电荷泵10所能获得的最高电压。因此,一个解决方案是如图所示以二极管形式连接该晶体管。另一选择为,可构建一附加输出级(未图示)来提供一等于13*VCC加上(至少)阈电压的选通电压。例如,美国专利第5,436,587号揭示一可经修改用于接收电压信号V13-21并提供一适当选通电压的输出级。尽管此一实施例将需要附加组件,但它不会遭受图2所示电压信号V13-21所经历的二极管压降。

通过查阅图2和图3,可推而广之在任一半时钟周期期间构造一具有一任意数目N个串联耦合电容器的电荷泵。在此一电荷泵内,第一复数个N级将包括第一级、第二级,依此类推,每一级皆包括一电容器。第二复数个N级从第(N+1)级开始,接下来是第(N+2)级,依此类推,每一级也包括一电容器。在一时钟信号的奇数半周期内,第一级内的电容器的正极端子耦合至第二级内的电容器的负极端子,依此类推。在该时钟信号的偶数半周期内,第(N+1)级内的电容器的正极端子耦合至第(N+2)级内的电容器的负极端子,依此类推。对于第一复数个电压级中的第二级及更高级,以及第二复数个电压级中的第(N+2)级及更高级,一级内任一给定电容器两端的电压大致等于该给定电容器负极端子上的电压加上前一级内的电容器两端的电压。在奇数半周期内,第一复数个级内的电容器正极端子上的电压用于对第二复数个级内相应的电容器充电。换句话说,第一级内的电容器正极端子上的电压对第(N+1)级内的电容器充电,第二级内的电容器正极端子上的电压对第(N+2)级内的电容器充电,依此类推。在偶数半周期内,第(N+1)级内的电容器正极端子上的电压对第二级内的电容器充电,依此类推,以使第(2*N-1)级内的电容器正极端子上的电压对第N级内的电容器充电。

如以上参照图2中电荷泵10所论述,为提供正确的选通电压,此一布置中的最后一级可能需要二极管连接的晶体管,此会在所产生电压中引入二极管压降;或者需要一输出级,此需要额外的组件。为避免使用这两种替代方案,可以对第一复数个电压级内的第N级和第二复数个电压级内的第2*N级进行修改,以使每一修改后的级为其他级提供选通电压。在此一实施例中,第2*N级将不会引入二极管压降,也不需要一附加输出级。

现在参见图4,一电荷泵70图解说明了此修改。级A至F可具有与参照图2所论述的相同的组件。这里,级A至F中的电容器将如前述般串联耦合:在CLK信号的奇数半周期期间,级A至C中的电容器串联耦合,且将来自串联耦合电容器的电压用于对其余的电容器充电。类似地,电容器D至F在CLK信号的偶数半周期期间串联耦合且将来自该等串联耦合电容器的电压用于对其余的电容器充电。然而,级C和F内的电容器并不如上述般充电。

为图解说明区别,图5显示了图4所示的电荷泵70的串联耦合及半周期充电。为清楚起见,只显示每一电压级内的电容器,其由相应字母A至F标识。在CLK信号的偶数半周期期间,级A至C内的电容器分别充电到VCC、3*VCC和3*VCC伏特。在CLK信号的奇数半周期内,这些已充电的电容器串联耦合且电压级A中的电容器的负极端子充电到VCC。结果,级A至C内的电容器正极端子上的电压将分别为2*VCC、5*VCC和8*VCC伏特。在该奇数半周期内,这些相同的电压用于对级D至F内的电容器充电。然而,未使用级C内的电容器正极端子上的8*VCC电压。而是两次使用级B内电容器正极端子上的5*VCC电压。因此,级D内的电容器将充电到2*VCC,级E内的电容器将充电到5*VCC,级F内的电容器将充电到5*VCC伏特。

类似地,在CLK信号的一偶数半周期期间,级D至F内的已充电电容器串联耦合。级D内的已充电电容器的负极端子充电到VCC伏特。结果,级D至F内的电容器的正极端子上的电压将分别为3*VCC、8*VCC和13*VCC伏特。然后,使用这些电压按如下方式对其余级充电。级A为“起始”级,因而其不自级D至F接收一充电电压,而是被充电到VCC伏特。不过,来自级D的电压分别将级B和C中的电容器充电到3*VCC伏特。正如在前一半周期内未使用来自级C的电压一样,来自最后一级F的电压不用于充电。

注意在该等级串联耦合时由此产生的电压所遵循的形式。如参照图3所论述,VCC项将被忽略,以将VCC标记为1,将2*VCC标记为2,依此类推。从级A的电容器负极端开始,该节点为1。级A内电容器两端的电压提供另一个1。级A内的电容器正极端子上的电压提供一2。继续注意(对于每一电容器而言皆按顺序)电容器负极端上的电压、电容器两端的电压和电容器正极端上的电压,级A至B会出现下列形式:1,1,2,3,5。该数列形成如上所述斐波纳契数列的一部分。所观察到的级D至E的电压与此相似:1,2,3,5,8。该数列也形成一斐波纳契数列的从第二个“1”开始的一部分。因为相对图2中所表示修改了最后一级C及F,所以在这两种情况中来自这些级的电压都不延续该斐波纳契数列。

重新参看图4,如参照图2所述。对分别位于级A、D和B内的电容器16、24和32进行充电。在CLK信号的奇数半周期内,来自级B的电压信号V53耦合至级D内的电容器40的负极端子。假定电容器48已相对于其负极端子充电到5*VCC,电容器48正极端子上的电压信号V83此时大致等于8*VCC。因电压信号V83耦合至n-mos FET 42的栅极,从而将其导通,因而来自级B的电压信号V53可将电容器40相对于其接地的负极端子充电到5*VCC。此又使电容器40的正极端子上的电压信号V58也将等于5*VCC。来自级E的电压信号V58用于对通过n-mos FET 58耦合的级F内的电容器56充电,n-mos FET 58由电压信号V83的8*VCC电压来导通。注意,不需要使用二极管连接的晶体管,从而会避免电容器56的充电电压中的任何二极管压降。此时,电容器56的负极端子通过导通的n-mos FET 54拉至地电平。

在CLK信号的偶数半周期期间,级D内电容器24的正极端子上的电压信号V23大致等于3*VCC。该电压信号对级B内的电容器32及级C内的电容器48二者充电。电压信号58将大致等于8*VCC,并将耦合至级F内的已充电电容器56的负极端子。因此,电压信号V5-13此时大致等于13*VCC。

通过查阅图4和图5,可推而广之来构造如下电荷泵:其在任一半时钟周期期间均具有一任意数目N个串联耦合电容器,其中来自第N个电容器的电压不用于对其他电容器充电。在此一电荷泵中,一第一复数N个级将包括一第一级、一第二级,依此类推,每一级均包括一电容器。一第二复数N个级从一第(N+1)级开始,接下来是一第(N+2)级,依此类推,每一级也包括一电容器。在一时钟信号的奇数半周期内,第一级内电容器的正极端子耦合至第二级内电容器的负极端子,依此类推。在该时钟信号的偶数半周期内,第(N+1)级内的电容器的正极端子耦合至第(N+2)级内电容器的负极端子,依此类推。在奇数半周期内,在第一复数个级内的电容器正极端子上的电压用于对第二复数个级内相应的电容器充电。换句话说,第一级内的电容器的正极端子上的电压对第(N+1)级内的电容器充电,第二级内的电容器正极端子上的电压对第(N+2)级内的电容器充电,依此类推,直至第(N-1)级内的电容器正极端子上的电压对第(2*N-1)电压级内的电容器充电。这里,该形式断开,以使第(2*N)电压级内的电容器也自第(N-1)电压级(而不是第N电压级)内的电容器正极端子接收其充电电压。

在偶数半周期内,第一电压级由电源VCC充电,第(N+1)级内的电容器正极端子上的电压对第二级内的电容器充电,第(N+2)级内的电容器正极端子上的电压对第三级内的电容器充电,依此类推,直至第(2*N-2)电压级内的电容器正极端子上的电压对第(N-1)电压级内的电容器充电。这里,该形式断开,以使第N电压级内的电容器也自第(2*N-2)电压级(而不是第(2*N-1)级)内的电容器正极端子接收其充电电压。在此一布置中,各电压级可具有如图4所示的结构,以使第2*N电压级可在其电容器正极端子上具有一n-mos FET(类似于n-mos FET58)。不管电压级的数目如何,第N电压级内的电容器正极端子上的电压将总是高到足以导通该n-mos FET,以使第2*N电压级内的电容器可以充电。通过此种方式,即会避免使用图2中二极管连接的晶体管58。

虽然上文是参照特定的实施例来说明本发明,但本说明仅为本发明应用的一实例,而不应视为对本发明的限制。因此,对所揭示实施例的特征的各种修改和组合仍归属于权利要求书所涵盖的本发明范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号