首页> 中国专利> 化学沉积用活化催化溶液和化学沉积方法

化学沉积用活化催化溶液和化学沉积方法

摘要

用于化学沉积的亲水性活化催化溶液是乳酸盐、钯和碱性介质的混合物。所述溶液在经过短时间辐照后能沉积钯催化剂,并能用水或类似物更有效地除去不需要的感光膜。所述乳酸盐最好包括乳酸铜和/或乳酸锌,所述钯盐最好是氯化钯。

著录项

  • 公开/公告号CN1197125A

    专利类型发明专利

  • 公开/公告日1998-10-28

    原文格式PDF

  • 申请/专利权人 株式会社村田制作所;

    申请/专利号CN98105376.9

  • 发明设计人 加纳修;吉田育史;小木曾美文;

    申请日1998-02-26

  • 分类号C23C18/31;H05K3/18;

  • 代理机构上海专利商标事务所;

  • 代理人白益华

  • 地址 日本京都府

  • 入库时间 2023-12-17 13:13:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2011-05-04

    未缴年费专利权终止 IPC(主分类):C23C18/30 授权公告日:20011121 终止日期:20100226 申请日:19980226

    专利权的终止

  • 2001-11-21

    授权

    授权

  • 1998-10-28

    公开

    公开

  • 1998-10-07

    实质审查请求的生效

    实质审查请求的生效

说明书

本发明涉及用于化学沉积的活化催化溶液和使用所述溶液的化学沉积方法。

通常使用化学沉积方法在电子部件(如高频线圈、介电滤波器、电容器、混合的IC等)的基材(如氧化铝、介电陶瓷、聚酰亚胺、玻璃、玻璃-环氧树脂、铁氧体等)上形成导电图案。在化学沉积时需要使用一种活化催化溶液活化基材表面。

将活化催化溶液施涂在基材上形成一层感光膜。当使用紫外光或激光辐照由活化催化溶液形成的感光膜时,感光膜的受照区被选择性地活化,使得仅有受照区才能被化学沉积。因此,使用这种活化催化溶液和光刻技术能形成具有良好图案的导电膜。

通常将溶解在有机溶剂(如氯仿)中的乙酰丙酮钯作为活化催化溶液。在显影过程中,这种使用乙酰丙酮钯的活化催化溶液需要使用大量的有机溶剂清洗基材。但是,出于经济和环境的原因,消耗如此大量的有机溶剂是不合要求的。如果不使用过量的溶剂,由于清洗不完全很可能会使由活化催化溶液形成的不需要的感光膜部分残留在基材上,从而造成化学沉积的金属沉积在这种不需要的部分上,使得随后化学沉积形成的金属图案的分辨率变差。

为了解决这个问题,日本公开专利申请95-33601公开了一种包括草酸盐(如草酸铁)、钯盐(如氯酸钯)和碱溶液的亲水性活化催化溶液。

根据所述日本公开专利申请,使用旋转涂覆法(spin-coat)或类似方法将所述活化催化溶液施涂在基材表面上形成感光膜。用光(如激光)辐照所述感光膜,从而使钯催化剂沉积在基材上。在用光辐照时可使用光刻掩模以便选择性地沉积钯催化剂。在这种情况下,用水或水性液体除去感光膜的未受照区域。在将沉积有钯催化剂的基材浸入化学沉积池中以后,在作为活化催化剂的钯催化剂的帮助下,在基材上形成了化学沉积膜。

由于活化催化溶液是亲水性的,所以在显影过程中所述的技术无需使用任何有机溶剂。因此能在从制备活化催化溶液到化学沉积的整个过程中不使用有机溶剂。另外,使用大量的水就能除去感光膜不需要的部分。但是,该常规的活化催化溶液存在下列问题。

准确地说,在该活化催化溶液中的钯和草酸根会形成在碱性溶液中具有低溶解度的草酸钯,并且其溶解度很难改进。具体地说,该日本公开专利在使用草酸铁这一点上具有明显的缺点,它会导致由这种催化溶液形成的感光膜的灵敏度差,并且在受照区和未受照区之间对比度差的问题。为了解决这种问题,需要延长辐照时间,这会增加生产成本并降低沉积金属的沉积效率。

另外,当用水除去受照感光膜的不需要部分时,草酸铁会水解成含钯催化剂的氢氧化物。该氢氧化物会固定在基材上并不能用水除去。这意味者感光膜未受照部分也被活化并且化学沉积的金属也会沉积在该未受照部分上,从而降低了导电图案之间的绝缘可靠性。这需要将基材浸入pH 14或更高的氢氧化钠溶液中以除去所述氢氧化物,或增加导电图案之间的间隔,从而会增加制造步骤或降低精细图案的制造能力。

出于上述原因,需要开发一种能解决上述问题,经过短时间的辐照就能沉积钯催化剂,并能通过洗涤方法有效地除去残留的感光膜的活化催化溶液。

本发明涉及能满足上述要求的亲水性活化催化溶液和化学沉积的方法。所述用于化学沉积的亲水性活化催化溶液是乳酸盐、钯盐和碱性介质的混合物。所述金属乳酸盐最好包括乳酸铜和乳酸锌中的至少一种,并且所述钯盐最好是氯化钯。所述碱性介质最好是氨水。

所述化学沉积方法包括下列步骤:将上述亲水性活化催化溶液施涂在基材上,在所述基材上形成感光膜;辐照所述感光膜以将钯催化剂沉积在所述基材上;使用所述钯催化剂作为活化催化剂将金属化学沉积在所述基材上。

可选择性地辐照所述感光膜,以便形成感光膜的受照区和未受照区。所述方法最好还在辐照步骤和化学沉积步骤之间包括用水或水性液体除去感光膜的未受照部分的步骤。

下面,将详细描述本发明较好的实例。

用于化学沉积的本发明亲水性活化催化溶液是乳酸盐、钯盐和碱性介质的混合溶液。较好的是,使用乳酸铜、乳酸锌或其混合物作为乳酸盐。另外,分别使用氯化钯和氨水作为钯盐和碱性介质。

当用光辐照由该亲水性活化催化溶液制得的感光膜时,来自乳酸铜或乳酸锌的铜离子或锌离子被活化,从而与钯离子相互作用。于是钯离子被还原成金属钯,从而将催化性钯沉积在基材上。

尽管本发明亲水性活化催化溶液的化学机理未完全明了,但是认为乳酸根和钯盐形成容易溶解在所述碱性溶液中的乳酸钯是重要的。在将钯催化剂沉积在基材上的过程中,通过使用含有高溶解度的乳酸钯的活化催化溶液,经较短的光辐照时间就能在照射区和非照射区之间形成明显的对比度。另外,由于乳酸盐不容易水解,所以能有效地除去感光膜而不形成任何不需要的化合物。

因此认为本发明的主要特征在于本发明的亲水性活化催化溶液是碱性的,并包括钯离子、乳酸根离子以及铜离子和锌离子中的至少一种。

尽管最好同时使用乳酸铜和乳酸锌作为乳酸盐,但是也可使用任何其它铜盐和锌盐分别代替乳酸铜和乳酸锌。

本发明化学沉积法包括将本发明活化催化溶液施涂在基材上形成由该活化催化溶液制得的感光膜的步骤。接着,用光(如激光)辐照所述感光膜,从而将钯催化剂沉积在所述基材上。随后,将沉积有钯催化剂的基材浸入化学沉积池中,由于钯催化剂的催化作用而使化学沉积膜沉积在所述基材上。

当通过光刻掩模用紫外光或激光扫描辐照感光膜时,最好提供用水或水性液体洗去感光膜未受照部分的显影步骤。

另外,在将基材浸入化学沉积池以前可对沉积有钯催化剂的的基材进行热处理,以便稳定沉积的钯催化剂并增强钯催化剂的活性。更具体地说,最好将沉积有钯催化剂的基材在惰性气体(如氮气)中在约100-300℃的温度下加热。可根据热处理的温度改变热处理持续的时间,但最好将基材在约140-180℃加热约1-5分钟。

本发明利用热处理,可对透明基材的两侧同时进行化学沉积。例如,在使用前面提到的方法将钯催化剂沉积在透明基材的正面以后,对所述透明基材进行热处理。随后,在该透明基材的背面形成感光膜并用上述方法对其进行光辐照。此时,由于沉积在正面上的钯催化剂因热处理而稳定,所以能成功地防止沉积在正面上的钯催化剂因透明基材背面的光辐照而失活。因此,通过将基材浸入化学沉积池中能同时在透明基材的两侧形成化学沉积膜。

实施例1

为了制备五个10ml活化催化溶液作为试样1-5,将用量如下表1所示的乳酸锌[Zn(C3H5O3)2·3H2O]、乳酸铜[Cu(C3H5O3)2]、和氯化钯[PdCl2]溶解在2ml氨水(28%)中,随后用8ml水稀释之,随后用0.45微米的微孔过滤器过滤得到的溶液。

                                   表1

  试样   1   2   3   4   5  乳酸锌  0.10g  0.10g  0.10g  0.10g  0.10g  乳酸铜  0.01g  0.02g  0.03g  0.04g  0.05g  氯化钯  0.05g  0.05g  0.05g  0.05g  0.05g

接着,以1,000rpm的旋速用30秒将上述试样1-5的各种活化催化溶液旋转涂覆在氧化铝基材上,形成感光膜。随后,用功率为10mmW/cm2的发射灯(exima-lamp,波长:172nm)的紫外光对所有膜分别照射3秒、5秒、10秒和30秒。水洗后,将基材在如下组成的化学沉积溶液(60℃)中浸渍10分钟,进行化学沉积。

NiSO4·6H2O           30g

次磷酸钠                10g

无水乙酸钠              10g

观察如此获得的试样1-5以检查是否存在镍的化学沉积膜。结果列于表2。

                                表2

  试样   1   2   3   4   5  3秒  未沉积  沉积  沉积  未沉积  未沉积  5秒  沉积  沉积  沉积  沉积  未沉积  10秒  沉积  沉积  沉积  沉积  未沉积  30秒  沉积  沉积  沉积  沉积  沉积

如表2所示,通过使用含乳酸锌、乳酸铜、氯化钯和氨水的活化催化溶液,所有经30秒紫外辐照的试样都能沉积镍化学沉积膜。对于试样2和3,在仅3秒长的很短时间紫外光辐照也能获得沉积的化学沉积膜。在对活化催化溶液试样2进行10秒钟紫外辐照的情况,证实在基材表面形成了分辨率级别(线/间距)为25微米、膜厚为0.3微米的镍图案。

另外,在本实验的试样2的基础上,使用氯化钯的量为0.1-0.05g的各个试样进行相似的实验。发现即使改变氯化钯的量,也能沉积镍的化学沉积膜。

实施例2

在本实施例2中,使用氯化铜[CuCl2·2H2O]代替乳酸铜。将用量如下表3所示的乳酸锌、氯化铜和氯化钯溶解在2ml氨水(28%)中,用8ml水稀释之,再用0.45微米的微孔过滤器进行过滤。

                      表3

    试样    6    7    8    乳酸锌    0.10g    0.10g    0.10g    氯化铜    0.01g    0.02g    0.03g    氯化钯    0.05g    0.05g    0.05g

接着,如实施例1那样旋转涂覆上述各活化催化溶液试样6-8以形成感光膜。随后用实施例1所述的紫外光对所述感光膜分别辐照10秒、20秒和30秒,水洗,再将试样在实施例1所述的化学沉积池中浸渍10分钟。

观察如此获得的试样6-8是否沉积有镍化学沉积膜。结果列于表4。

                    表4

   试样    6     7     8   10秒   未沉积    未沉积    未沉积   20秒   未沉积    沉积    未沉积   30秒   沉积    沉积    沉积

如上表4所示,经30秒辐照后,试样6-8均沉积有化学沉积膜。另外,确认经20秒辐照的试样7上发生了沉积。

还证实用硫酸铜代替氯化铜可获得相同的结果。

实施例3

使用相同于实施例1所述的方法,但在本实施例3中,使用氯化锌代替乳酸锌。将用量如下表5所示的氯化锌、乳酸铜和氯化钯溶解在2ml氨水(28%)中,用8ml水稀释之,再用0.45微米的微孔过滤器过滤。

                       表5

    试样    9    10    11    氯化锌    0.10g    0.10g    0.10g    乳酸铜    0.01g    0.02g    0.03g    氯化钯    0.05g    0.05g    0.05g

接着,如实施例1那样旋转涂覆上述各活化催化溶液试样9-11以形成感光膜。分别用紫外光辐照10秒、20秒和30秒,通过水洗除去未反应的感光膜,再将试样在化学沉积池中浸渍10分钟。

观察如此获得的试样9-11是否沉积有镍化学沉积膜。结果列于表6。

                  表6

   试样     9     10     11   10秒    未沉积    未沉积    未沉积   20秒    未沉积    未沉积    沉积   30秒    未沉积    沉积    沉积

如上表6所示,试样11经20秒辐照、试样10和11经30秒辐照后观察到化学沉积膜。对于试样9,如果紫外光的辐照时间相当长(3分钟),在化学沉积池中浸渍2-3分钟后证实发生了化学沉积膜的沉积。

从该实施例可见,即使在不使用乳酸锌,通过使用乳酸铜作为铜盐并通过调节紫外光的辐照时间仍然能沉积镍化学沉积膜。证实用硫酸锌代替氯化锌也能获得相同的效果。

比较例1

在不属于本发明范围的本比较例中,使用氯化锌代替实施例1中的乳酸锌,使用氯化铜[CuCl2·2H2O]代替实施例1中的乳酸铜。将用量如下表7所示的氯化锌、氯化铜和氯化钯溶解在2ml氨水(28%)中,用8ml水稀释之,再用0.45微米的微孔过滤器过滤。

                    表7

   试样    12    13    14   氯化锌    0.10g    0.10g    0.10g   氯化铜    0.01g    0.02g    0.03g   氯化钯    0.05g    0.05g    0.05g

接着,如实施例1那样旋转涂覆各活化催化溶液试样12-14以形成感光膜。用紫外光对所述感光膜分别辐照10秒、20秒和30秒,水洗除去未反应的感光膜,再将试样在化学沉积池中浸渍10分钟。

观察如此获得的试样12-14是否沉积有镍化学沉积膜。观察结果证实,无论辐照时间的长短,试样12-14都未沉积镍化学沉积膜。

实施例5

在实施例1中使用了乳酸锌、乳酸铜和氯化钯。但在本实施例5中,活化催化溶液中不加入乳酸铜,仅使用乳酸锌作为乳酸盐。将用量如下表8所示的乳酸锌和氯化钯溶解在2ml氨水(28%)中,用8ml水稀释之,再用0.45微米的微孔过滤器过滤。

                        表8

 试样   15   16   17   18   19 乳酸锌   0.05g   0.10g   0.15g   0.20g   0.30g 氯化钯   0.05g   0.05g   0.05g   0.05g   0.05g

接着,如实施例1那样旋转涂覆各活化催化溶液试样15-19以形成感光膜。用紫外光对所述感光膜分别辐照3秒、5秒和10秒,水洗除去未反应的感光膜,将试样在化学沉积池中浸渍10分钟,使用1升具有下列组成的甲醛型铜化学沉积溶液(36℃)代替镍化学沉积溶液。各个经辐照的试样分别浸渍10分钟进行化学沉积。

CuSO4·5H2O           70g

EDTA·4H2O             100g

NaOH                    60g

观察如此获得的试样15-19是否沉积有铜化学沉积膜。结果列于表9。

                       表9

  试样  15   16  17   18   19  3秒 未沉积  未沉积 未沉积  未沉积  沉积  5秒 沉积  未沉积 沉积  未沉积  沉积  10秒 沉积  沉积 沉积  沉积  沉积

试样15-19经10秒辐照时间都沉积有化学沉积膜。对于试样18和19,在短至3秒的辐照时间也可以沉积化学沉积膜。实施例5证实当使用乳酸锌作为乳酸盐时,通过使用铜化学沉积池能沉积良好的化学沉积膜。还证实当使用活化催化溶液试样19和5秒的紫外光辐照时间进行化学沉积时,可在基材上获得分辨率级别(线/间距)为25微米、膜厚0.3微米的铜化学沉积图案。

实施例6

在实施例6中,活化催化溶液中不加入乳酸锌,仅使用乳酸铜作为乳酸盐。将用量如下表10所示的乳酸铜和氯化钯溶解在2ml氨水(28%)中,用8ml水稀释之,再用0.45微米的微孔过滤器过滤。

                           表10

 试样   20   21   22   23   24 乳酸铜   0.05g   0.10g   0.15g   0.20g   0.30g 氯化钯   0.05g   0.05g   0.05g   0.05g   0.05g

接着,如实施例1那样旋转涂覆各活化催化溶液试样20-24以形成感光膜。用紫外光对所述感光膜分别辐照30秒、60秒和180秒。水洗除去未反应的感光膜,再将试样在镍化学沉积池中浸渍10分钟。在实施例6中所使用的化学沉积池的组成与实施例1的化学沉积池的组成相同。

观察如此获得的试样20-24是否沉积有镍化学沉积膜。结果列于表11。

                     表9

  试样   20   21   22   23   24  30秒  未沉积  未沉积  未沉积  未沉积  未沉积  60秒  沉积  未沉积  未沉积  未沉积  沉积  180秒  沉积  沉积  沉积  沉积  沉积

如上表11所示,证实试样24经60秒辐照以及所有试样经180秒辐照均发生了沉积。

因此证实即使在仅使用乳酸铜作为乳酸盐的情况下,通过调节紫外光的辐照时间也能沉积镍化学沉积膜。

实施例7

实施例7不同于实施例1-6,想要证实乳酸钯和草酸钯在碱性溶液中的溶解度差异。具体地说,根据表12和13所示的用量分别将乳酸[C3H6O3]和草酸[C2H2O4]溶解在含有0.1g氯化钯和附加的水的2ml氨水(28%)中,并测定乳酸钯和草酸钯各自的溶解度。

                             表12

  试样    25    26    27    28    29  乳酸    0.10g    0.10g    0.10g    0.10g    0.10g  氨水    2ml    2ml    2ml    2ml    2ml  氯化钯    0.10g    0.10g    0.10g    0.10g    0.10g  水    0ml    2ml    4ml    5ml    6ml  溶解性    溶解    溶解    溶解    溶解    溶解

                         表13

   试样    25    26    27    28    29  草酸    0.10g    0.10g    0.10g    0.10g    0.10g  氨水    2ml    2ml    2ml    2ml    2ml  氯化钯    0.10g    0.10g    0.10g    0.10g    0.10g  水    0ml    2ml    4ml    5ml    6ml  溶解性    不溶    不溶    不溶    不溶    溶解

从表12和13所示的结果可见,在2ml氨水(28%)的存在下含有0.1g乳酸和0.1g氯化钯的组合物是完全溶解的。另一方面,为了溶解0.1g草酸和0.1g氯化钯,至少需要2ml氨水(28%)和6ml水。由上面的结果可见在相等量的碱性水溶液中乳酸钯的溶解度要大于草酸钯的溶解度。

尽管在上面实施例中使用活化催化溶液的具体组合物,但是乳酸盐的含量(按10ml溶液计)可为约0.01-1g,较好约为0.1-0.5g。更具体地说,按10ml(即总体积)活化催化溶液计,乳酸锌和乳酸铜的含量可分别在0.01-0.5g(最好约0.05-0.2g)和0.003-0.5g(最好约0.02-0.4g)范围内变化。钯盐的含量可在0.01-饱和(最好约0.3-0.7g)的范围内变化,氨水(28%)的含量可在约0.5-5ml的范围内变化。另外,可使用其它亲水性钯盐(如硫酸钯、硝酸钯、醋酸钯等)代替氯化钯。

为了将活化催化溶液更均匀地施涂在基材上,可向该溶液中加入亲水性粘合剂(如聚乙烯醇)或表面活性剂。

另外,辐照感光膜的光波长可在约100-400nm范围内变化。除了化学沉积镍和铜以外,本发明活化催化溶液还可被用于化学沉积银、钯、金和铂。

作为进行化学沉积的基材,不仅可使用上面提到的氧化铝基材,还可使用任何其它基材,如介电或磁性陶瓷基材、聚酰亚胺基材、玻璃基材、塑料基材如玻璃-环氧树脂基材、半导体基材。

本发明的化学沉积方法可不必通过水洗显影步骤而实施。例如,当感光膜的整个区域都被辐照时,可省去显影步骤。另外,无需高分辨率的情况下,即使在选择性曝光的情形下也可省去显影步骤。还可在显影步骤中使用水性液体代替水。也可使用其它液体。

从前面描述中可清除地看到,使用本发明活化催化溶液可获得下列效果。

首先,由于本发明活化催化溶液是亲水性的,因此可享有对水的亲和性的优点。也就是说,使用大量的水就可安全并经济地实施显影步骤,从而确保除去不需要的感光膜,形成高分辨率的精细图案。

由于活化催化溶液组合物中所用的乳酸盐在碱性溶液中具有高的溶解度,因此容易获得高金属浓度的活化催化溶液。从而能将钯催化剂快速沉积在基材上并能缩短用于沉积钯催化剂的辐照时间。例如,当使用功率为10mmW/cm2波长为172nm的发射灯进行辐照时,在上面最佳实施例中3秒钟就能沉积钯催化剂。因此,可降低制造成本并改进化学沉积金属的沉积效率。

另外,本发明活化催化溶液不会产生明显的水解。因此,可除去感光膜未受照部分,从而消除了化学沉积金属在未受照部分上的沉积,改进了化学沉积金属图案的分辨率。

此外,使用本发明活化催化溶液的化学沉积方法沉积的化学沉积膜与基材具有高的粘结强度,因为它不含某些不需要的物质,如氢氧化铁。因此,在事先不对基材进行酸洗(etching)的情况下就能获得足够的粘结强度。从而能在难以进行酸洗的基材上形成具有足够粘结强度的化学沉积金属。

另外,由于不含分解的化合物,所以要沉积的化学沉积金属具有高的导电性。因此,可将使用所述活化催化溶液形成的化学沉积金属用于需要高导电性的高频电子线路的导电图案中。

尽管公开了本发明的较好实例,但是在所附权利要求的范围内可对本文所公开的方法进行各种变化。因此,应理解本发明的范围仅受权利要求的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号