首页> 外文OA文献 >An approach to syndrome differentiation in traditional chinese medicine based on neural network
【2h】

An approach to syndrome differentiation in traditional chinese medicine based on neural network

机译:基于神经网络的中医辨证方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the traditional knowledge representation based on rules is simple and explicit, it is not effective in the field of syndrome differentiation in Traditional Chinese Medicine (TCM), which involves many uncertain concepts. To represent uncertain knowledge of syndrome differentiation in TCM, two methods were presented respectively based on certainty factors and certainty intervals. Exploiting these two methods, an approach to syndrome differentiation in TCM was proposed based on neural networks to avoid some limitations of other approaches. The main advantage of the approach is that it may realize uncertain inference of syndrome differentiation in TCM, whereas it doesn't request experts to provide all possible combinations for certainty degrees of symptoms and syndromes. Rather than Back Propagation (BP) algorithm but its modification was employed to improve the capability of generalization of neural networks. First, the standard feedforward multilayer BP neural network and its modification were introduced. Next, two methods for knowledge representation, respectively based on certainty factors and certainty intervals, were presented Then, the algorithm was proposed based on neural network for the uncertain inference of syndrome differentiation in TCM. Finally, an example was demonstrated to illustrate the algorithm.
机译:尽管基于规则的传统知识表示虽然简单明了,但在涉及许多不确定概念的中医辨证领域并不有效。为了表示中医辨证论断的不确定性,根据确定性因子和确定性区间分别提出了两种方法。利用这两种方法,提出了一种基于神经网络的中医辨证方法,以避免其他方法的局限性。该方法的主要优点是,它可以在中医中实现不确定的证候分化推断,而无需专家提供确定性程度的证候和证候的所有可能组合。而不是反向传播(BP)算法,而是对其进行了修改以提高神经网络的泛化能力。首先,介绍了标准前馈多层BP神经网络及其改进。接着,提出了两种基于确定性因子和确定性区间的知识表示方法,然后提出了基于神经网络的中医证候分化不确定性推断算法。最后,通过一个例子说明了该算法。

著录项

  • 作者

    Shi Minghui; Zhou Changle;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号