首页> 外文OA文献 >Enhanced Transit Ridership Forecasting Using Automatic Passenger Counting Data
【2h】

Enhanced Transit Ridership Forecasting Using Automatic Passenger Counting Data

机译:使用自动乘客计数数据的增强型过境乘客预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent emphasis on sustainable development has carried over into the transportation sector, given the impacts of transportation behavior on environment and equity. Transit is widely recognized as a viable option supporting the sustainability issue providing benefits such as reducing air pollution, alleviating traffic congestion, enhancing mobility, and promoting social well-being (health through walk- and bike-access). An important tool in advancing sustainable transport is to generate more robust transit ridership models to evaluate the benefits of investments in these modes. In particular, this thesis concentrates on two sub-problems of (1) calibration procedures and (2) insufficient data for transit mode choice modules. The first purpose of this thesis is to improve the calibration procedures through better understanding of calibrated mode constants. First, the magnitude and relative importance of mode constants to measurable components are analyzed using representative data from six cities in North America. The mode constants (representing unmeasured inputs) in study cities account for 41% to 65% of total utilities. The results demonstrate that, in some cases, mode constants are large enough to render models insensitive to changes of important but omitted system factors such as reliability, comfort, convenience, visibility, access environment, and safety. The need to explicitly include mode constant endogenous to the model is verified. Second, this thesis introduces a framework to improve the utilization of new data sources such as automated vehicle location (AVL) and automated passenger counting (APC) systems in transit ridership forecasting models. The direct application of the AVL/APC data to travel forecasting requires an important intermediary step that links stops activities - boarding and alighting - to the actual location (at the TAZ level) that generated/attracted this trip. The GIS-based transit trip allocation methods are newly developed with focus on considering the case when the access shed spans multiple TAZs. The proposed methods improve practical applicability with easily obtained data in local contexts. The performance of the proposed allocation methods is further evaluated using transit on-board survey data. The results show that the buffer area ratio weighted by employment or population and footprint weighted method perform reasonably well in the study area and can effectively handle various conditions, particularly for major activity generators. The average errors between observed data and the proposed method are about 8% for alighting trips and 18% for boarding trips. Third, given the outputs from the previous research effort, the application framework of the AVL/APC data to travel forecasting model calibration is demonstrated. In the proposed framework, transit trip allocation methods are employed to identify prediction errors at finer geographic level (at TAZs). In turn, the approach makes it possible to evaluate the zonal characteristics that affect estimation accuracy. Developed multinomial regression models produce equations for the mode choice prediction errors as a function of (1) measurable but omitted market segmentation variables in current mode choice utility function including socio-economic and land use data; and (2) newly quantifiable attributes with new data source or techniques including quality of service variables. The proposed composite index can systematically evaluate and prioritize the major source of prediction errors by quantifying total magnitudes of prediction error and a possible error component. The outcomes of the research in this thesis can serve as foundation towards more reliable and accurate mode choice models and ultimately enhanced transit travel forecasting.
机译:考虑到运输行为对环境和公平的影响,最近对可持续发展的重视已转移到运输部门。众所周知,公交是支持可持续发展问题的可行选择,它带来的好处包括减少空气污染,缓解交通拥堵,提高流动性和促进社会福祉(通过步行和骑自行车出入可带来健康)。促进可持续交通运输的重要工具是生成更强大的过境乘车率模型,以评估在这些模式下投资的收益。特别是,本文着重于两个子问题:(1)校准程序和(2)过渡模式选择模块的数据不足。本文的首要目的是通过更好地了解校准模式常数来改进校准程序。首先,使用来自北美六个城市的代表性数据分析了模式常数对可测量组件的大小和相对重要性。研究城市的模式常数(代表未测输入)占公用事业总量的41%至65%。结果表明,在某些情况下,模式常数大到足以使模型对重要但被忽略的系统因素(例如可靠性,舒适性,便利性,可见性,访问环境和安全性)的变化不敏感。明确需要包含模型固有的模式常数。其次,本文引入了一个框架,以在交通运输量预测模型中提高新数据源的利用率,例如自动车辆定位(AVL)和自动乘客计数(APC)系统。将AVL / APC数据直接应用于旅行预测需要一个重要的中间步骤,该步骤将停止活动(登机和下车)与生成/吸引此行程的实际位置(在TAZ级别)联系起来。新开发了基于GIS的过境旅行分配方法,重点是考虑访问棚跨越多个TAZ的情况。所提出的方法利用在本地环境中容易获得的数据来提高实际适用性。拟议的分配方法的性能将使用在途车载调查数据进行进一步评估。结果表明,以就业或人口加权的足迹面积比和足迹加权法在研究区域中表现良好,可以有效地应对各种条件,特别是对于主要活动产生者。观察到的数据与提出的方法之间的平均误差对于下车旅行而言约为8%,对于登机旅行而言约为18%。第三,基于先前研究成果,阐述了AVL / APC数据在旅行预测模型校准中的应用框架。在提出的框架中,采用过境旅行分配方法来识别更精细地理级别(在TAZ)的预测误差。反过来,该方法可以评估影响估计精度的地带特征。开发的多项式回归模型产生了模式选择预测误差的方程,该方程是(1)当前模式选择效用函数中包括社会经济和土地利用数据的可测量但被忽略的市场细分变量的函数; (2)具有新数据源或技术的新可量化属性,包括服务质量变量。拟议的综合指数可以通过量化预测误差的总大小和可能的误差成分,系统地评估预测误差的主要来源并对其进行优先排序。本文的研究成果可为建立更可靠,更准确的模式选择模型和最终增强公交旅行预测奠定基础。

著录项

  • 作者

    Jung You Jin;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号