首页> 外文OA文献 >Full Vehicle State Estimation Using a Holistic Corner-based Approach
【2h】

Full Vehicle State Estimation Using a Holistic Corner-based Approach

机译:基于整体角点法的整车状态估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vehicles' active safety systems use different sensors, vehicle states, and actuators, along with an advanced control algorithm, to assist drivers and to maintain the dynamics of a vehicle within a desired safe range in case of instability in vehicle motion. Therefore, recent developments in such vehicle stability control and autonomous driving systems have led to substantial interest in reliable road angle and vehicle states (tire forces and vehicle velocities) estimation. Advances in applications of sensor technologies, sensor fusion, and cooperative estimation in intelligent transportation systems facilitate reliable and robust estimation of vehicle states and road angles. In this direction, developing a flexible and reliable estimation structure at a reasonable cost to operate the available sensor data for the proper functioning of active safety systems in current vehicles is a preeminent objective of the car manufacturers in dealing with the technological changes in the automotive industry.This thesis presents a novel generic integrated tire force and velocity estimation system at each corner to monitor tire capacities and slip condition individually and to address road uncertainty issues in the current model-based vehicle state estimators. Tire force estimators are developed using computationally efficient nonlinear and Kalman-based observers and common measurements in production vehicles. The stability and performance of the time-varying estimators are explored and it is shown that the developed integrated structure is robust to model uncertainties including tire properties, inflation pressure, and effective rolling radius, does not need tire parameters and road friction information, and can transfer from one car to another.The main challenges for velocity estimation are the lack of knowledge of road friction in the model-based methods and accumulated error in kinematic-based approaches. To tackle these issues, the lumped LuGre tire model is integrated with the vehicle kinematics in this research. It is shown that the proposed generic corner-based estimator reduces the number of required tire parameters significantly and does not require knowledge of the road friction. The stability and performance of the time-varying velocity estimators are studied and the sensitivity of the observers' stability to the model parameter changes is discussed. The proposed velocity estimators are validated in simulations and road experiments with two vehicles in several maneuvers with various driveline configurations on roads with different friction conditions. The simulation and experimental results substantiate the accuracy and robustness of the state estimators for even harsh maneuvers on surfaces with varying friction.A corner-based lateral state estimation is also developed for conventional cars application independent of the wheel torques. This approach utilizes variable weighted axles' estimates and high slip detection modules to deal with uncertainties associated with longitudinal forces in large steering. Therefore, the output of the lateral estimator is not altered by the longitudinal force effect and its performance is not compromised. A method for road classification is also investigated utilizing the vehicle lateral response in diverse maneuvers.Moreover, the designed estimation structure is shown to work with various driveline configurations such as front, rear, or all-wheel drive and can be easily reconfigured to operate with different vehicles and control systems' actuator configurations such as differential braking, torque vectoring, or their combinations on the front or rear axles. This research has resulted in two US pending patents on vehicle speed estimation and sensor fault diagnosis and successful transfer of these patents to industry.
机译:车辆的主动安全系统使用不同的传感器,车辆状态和致动器,以及先进的控制算法,以在车辆运动不稳定的情况下协助驾驶员并将车辆动态保持在所需的安全范围内。因此,这种车辆稳定性控制和自动驾驶系统的最新发展引起了人们对可靠道路角度和车辆状态(轮胎力和车辆速度)估计的极大兴趣。传感器技术的应用,传感器融合以及智能交通系统中的协同估算技术的进步促进了对车辆状态和道路角度的可靠而可靠的估算。在这个方向上,开发合理且成本合理的灵活可靠的估算结构,以操作可用的传感器数据,以使当前车辆中的主动安全系统正常运行是汽车制造商应对汽车行业技术变化的首要目标本文提出了一种新颖的通用综合轮胎力和速度估计系统,用于在每个拐角处单独监视轮胎容量和滑移状况,并解决当前基于模型的车辆状态估计器中的道路不确定性问题。轮胎力估算器是使用计算效率高的非线性和基于Kalman的观测器以及生产车辆中的常见测量值开发的。探索了随时间变化的估计器的稳定性和性能,结果表明,所开发的集成结构对于建模不确定性(包括轮胎特性,充气压力和有效滚动半径)具有鲁棒性,不需要轮胎参数和路面摩擦信息,并且可以速度估算的主要挑战是,缺乏基于模型的方法中的道路摩擦知识,以及基于运动学的方法中的累积误差。为了解决这些问题,本研究将集总的LuGre轮胎模型与车辆运动学集成在一起。结果表明,提出的基于转角的通用估计器显着减少了所需轮胎参数的数量,并且不需要了解道路摩擦。研究了时变速度估计器的稳定性和性能,并讨论了观测器稳定性对模型参数变化的敏感性。拟议的速度估算器已在模拟和道路实验中得到了验证,其中包括在具有不同摩擦条件的道路上以不同动力传动系统配置的两种机动车辆。仿真和实验结果证实了状态估计器的精确性和鲁棒性,即使在摩擦变化不定的表面上进行了苛刻的操纵,也为传统的汽车应用开发了基于转弯的侧向状态估计,而与车轮扭矩无关。这种方法利用可变加权轴的估计值和高滑移检测模块来处理大型转向中与纵向力相关的不确定性。因此,横向估计器的输出不会因纵向力效应而改变,并且其性能也不会受到影响。还研究了一种利用车辆在不同操纵方式下的横向响应进行道路分类的方法,此外,设计的估算结构还显示可与各种传动系配置配合使用,例如前轮驱动,后轮驱动或全轮驱动,并且可以轻松地重新配置以与不同车辆和控制系统的执行器配置,例如差速制动,扭矩矢量控制或它们在前轴或后轴上的组合。这项研究已获得两项有关车辆速度估计和传感器故障诊断的美国待批专利,并将这些专利成功地推向了工业。

著录项

  • 作者

    Hashemi Ehsan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号