首页> 外文OA文献 >On Efficient Polynomial Multiplication and Its Impact on Curve based Cryptosystems
【2h】

On Efficient Polynomial Multiplication and Its Impact on Curve based Cryptosystems

机译:有效多项式乘法及其对基于曲线的密码系统的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Secure communication is critical to many applications. To this end, various security goals can be achieved using elliptic/hyperelliptic curve and pairing based cryptography. Polynomial multiplication is used in the underlying operations of these protocols. Therefore, as part of this thesis different recursive algorithms are studied; these algorithms include Karatsuba, Toom, and Bernstein. In this thesis, we investigate algorithms and implementation techniques to improve the performance of the cryptographic protocols. Common factors present in explicit formulae in elliptic curves operations are utilized such that two multiplications are replaced by a single multiplication in a higher field. Moreover, we utilize the idea based on common factor used in elliptic curves and generate new explicit formulae for hyperelliptic curves and pairing. In the case of hyperelliptic curves, the common factor method is applied to the fastest known even characteristic hyperelliptic curve operations, i.e. divisor addition and divisor doubling. Similarly, in pairing we observe the presence of common factors inside the Miller loop of Eta pairing and the theoretical results show significant improvement when applying the idea based on common factor method. This has a great advantage for applications that require higher speed.
机译:安全通信对于许多应用程序至关重要。为此,可以使用椭圆/超椭圆曲线和基于配对的密码术来实现各种安全目标。在这些协议的基础操作中使用了多项式乘法。因此,作为本文的一部分,研究了不同的递归算法。这些算法包括Karatsuba,Toom和Bernstein。本文研究了提高密码协议性能的算法和实现技术。利用椭圆曲线运算中显式公式中存在的公因数,以便在一个较高的字段中将两个乘法替换为单个乘法。此外,我们利用基于椭圆曲线的公共因子的想法,并为超椭圆曲线和配对生成新的显式公式。在超椭圆曲线的情况下,将公因子方法应用于最快已知的偶数特征超椭圆曲线操作,即除数加法和除数加倍。同样,在配对过程中,我们观察到Eta配对的Miller循环内部存在公共因子,当应用基于公共因子方法的思想时,理论结果显示出显着改进。这对于需要更高速度的应用程序具有很大的优势。

著录项

  • 作者

    Alrefai Ahmad Salam;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号