首页> 外文期刊>Journal of circuits, systems and computers >Efficient Lightweight Hardware Structures of Point Multiplication on Binary Edwards Curves for Elliptic Curve Cryptosystems
【24h】

Efficient Lightweight Hardware Structures of Point Multiplication on Binary Edwards Curves for Elliptic Curve Cryptosystems

机译:椭圆曲线密码系统在二进制Edwards曲线上的点乘法的高效轻量级硬件结构

获取原文
获取原文并翻译 | 示例

摘要

This paper presents efficient lightweight hardware implementations of the complete point multiplication on binary Edwards curves (BECs). The implementations are based on general and special cases of binary Edwards curves. The complete differential addition formulas have the cost of 5M + 4S + 2D and 5M + 4S + 1D for general and special cases of BECs, respectively, where M, S and D denote the costs of a field multiplication, a field squaring and a field multiplication by a constant, respectively. In the general case of BECs, the structure is implemented based on 3 concurrent multipliers. Also in the special case of BECs, two structures by employing 3 and 2 field multipliers are proposed for achieving the highest degree of parallelization and utilization of resources, respectively. The field multipliers are implemented based on the proposed efficient digit-digit polynomial basis multiplier. Two input operands of the multiplier proceed in digit level. This property leads to reduce hardware consumption and critical path delay. Also, in the structure, based on the change of input digit size from low digit size to high digit size the number of clock cycles and input words are different. Therefore, the multiplier can be flexible for different cryptographic considerations such as low-area and high-speed implementations. The point multiplication computation requires field inversion, therefore, we use a low-cost Extended Euclidean Algorithm (EEA) based inversion for implementation of this field operation. Implementation results of the proposed architectures based on Virtex-5 XC5VLX110 FPGA for two fields F(2)163 and F(2)233 are achieved. The results show improvements in terms of area and efficiency for the proposed structures compared to previous works.
机译:本文介绍了在二进制Edwards曲线(BEC)上完成点乘法的高效轻量级硬件实现。这些实现基于二进制Edwards曲线的一般情况和特殊情况。对于BEC的一般情况和特殊情况,完整的差分加法公式的成本分别为5M + 4S + 2D和5M + 4S + 1D,其中M,S和D表示场乘法,场平方和场的成本。分别乘以一个常数。在BEC的一般情况下,该结构是基于3个并发乘法器实现的。同样在BEC的特殊情况下,提出了采用3和2场乘法器的两种结构,分别用于实现最高程度的并行化和资源利用。场乘法器是基于提出的有效数位多项式基乘器实现的。乘法器的两个输入操作数以数字级进行。此属性可减少硬件消耗和关键路径延迟。同样,在该结构中,基于输入数字大小从低数字大小到高数字大小的变化,时钟周期数和输入字不同。因此,乘法器可以灵活地适应不同的密码考虑因素,例如低面积和高速实现。点乘法计算需要场反转,因此,我们使用基于低成本扩展欧几里德算法(EEA)的反演来实现此场操作。获得了针对两个字段F(2)163和F(2)233的,基于Virtex-5 XC5VLX110 FPGA的拟议架构的实现结果。结果表明,与以前的工作相比,拟议结构的面积和效率都有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号