首页> 外文OA文献 >Phenotyping hypotensive patients in critical care using hospital discharge summaries
【2h】

Phenotyping hypotensive patients in critical care using hospital discharge summaries

机译:使用出院摘要对重症监护中的低血压患者进行表型分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Among critically-ill patients, hypotension represents a failure in compensatory mechanisms and may lead to organ hypoperfusion and failure. In this work, we adopt a datadriven approach for phenotype discovery and visualization of patient similarity and cohort structure in the intensive care unit (ICU). We used Hierarchical Dirichlet Process (HDP) as a non-parametric topic modeling technique to automatically learn a d-dimensional feature representation of patients that captures the latent 'topic' structure of diseases, symptoms, medications, and findings documented in hospital discharge summaries. We then used the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to convert the d-dimensional latent structure learned from HDP into a matrix of pairwise similarities for visualizing patient similarity and cohort structure. Using discharge summaries of a large patient cohort from the MIMIC II database, we evaluated the clinical utility of the discovered topic structure in phenotyping critically-ill patients who experienced hypotensive episodes. Our results indicate that the approach is able to reveal clinically interpretable clustering structure within our cohort and may potentially provide valuable insights to better understand the association between disease phenotypes and outcomes.
机译:在重症患者中,低血压代表代偿机制失败,并可能导致器官灌注不足和衰竭。在这项工作中,我们采用数据驱动的方法进行表型发现,并在重症监护病房(ICU)中可视化患者相似性和队列结构。我们使用分层Dirichlet过程(HDP)作为非参数主题建模技术,以自动学习患者的d维特征表示,该特征表示捕获了潜在的“主题”结构的疾病,症状,药物和出院摘要中记录的发现。然后,我们使用t分布随机邻居嵌入(t-SNE)算法将从HDP学习的d维潜在结构转换为成对相似性矩阵,以可视化患者相似性和队列结构。使用来自MIMIC II数据库的大量患者队列的出院总结,我们评估了所发现主题结构在经历降压发作的危重患者表型中的临床效用。我们的结果表明,该方法能够揭示我们队列中临床上可解释的聚类结构,并可能提供有价值的见解,以更好地了解疾病表型与结局之间的关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号