首页> 外文OA文献 >Rare Probability Estimation under Regularly Varying Heavy Tails
【2h】

Rare Probability Estimation under Regularly Varying Heavy Tails

机译:常变重尾下的罕见概率估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies the problem of estimating the probability of symbols that have occurred very rarely, in samples drawn independently from an unknown, possibly infinite, discrete distribution. In particular, we study the multiplicative consistency of estimators, defined as the ratio of the estimate to the true quantity converging to one. We first show that the classical Good-Turing estimator is not universally consistent in this sense, despite enjoying favorable additive properties. We then use Karamata's theory of regular variation to prove that regularly varying heavy tails are sufficient for consistency. At the core of this result is a multiplicative concentration that we establish both by extending the McAllester-Ortiz additive concentration for the missing mass to all rare probabilities and by exploiting regular variation. We also derive a family of estimators which, in addition to being consistent, address some of the shortcomings of the Good-Turing estimator. For example, they perform smoothing implicitly and have the absolute discounting structure of many heuristic algorithms. This also establishes a discrete parallel to extreme value theory, and many of the techniques therein can be adapted to the framework that we set forth.
机译:本文研究了估计在独立于未知,可能无限的离散分布的样本中很少出现的符号概率的问题。特别是,我们研究估计量的乘法一致性,定义为估计量与实际数量之比收敛到一个的比率。我们首先表明,尽管享有良好的加性,但经典的Good-Turing估算器在这个意义上并不是普遍一致的。然后,我们使用Karamata的规则变化理论来证明规则变化的粗尾足以保证一致性。此结果的核心是乘法浓度,我们可以通过将缺失质量的McAllester-Ortiz添加剂浓度扩展到所有罕见概率,并利用规则变化来建立乘法浓度。我们还得出了一个估计量族,除了保持一致之外,它还解决了Good-Turing估计量的一些缺点。例如,它们隐式执行平滑,并具有许多启发式算法的绝对折扣结构。这也建立了一种与极值理论平行的离散方法,并且其中的许多技术都可以适应我们提出的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号