首页> 外文OA文献 >Fast maximum likelihood estimation using continuous-time neural point process models
【2h】

Fast maximum likelihood estimation using continuous-time neural point process models

机译:使用连续时间神经点过程模型的快速最大似然估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np2) to O(qp2). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization.
机译:最近的一份报告估计,同时记录的神经元数量呈指数增长。使用神经活动的离散时间点过程模型的常用统计范式涉及最大似然估计的计算。每个神经元计算此估计的时间与时间的精细间隔离散化中的单元数成正比。通过使用神经活动的连续时间模型和最佳有效的高斯正交,在参数p的数量远少于时间仓n的常见情况下,显着减少了内存需求和计算时间。在这种情况下,当q等于正交阶时,内存需求从O(np)减少到O(qp),浮点运算的数量从O(np2)减少到O(qp2)。基于生理考虑,误差范围和描述数值积分误差与影响参数估算值和观测到的Fisher信息的数值误差之间的关系的数学结果,评估了估算估算值的准确性。提供了用于调整数值积分顺序的检查。该程序已在仿真和海马记录中得到验证。已经发现,在95%的海马记录中,q等于60产生的数值误差相对于参数估计标准误差可忽略不计。使用提出的方法进行统计推断是对使用神经活动的离散时间点过程模型进行统计推断的快速便捷的替代方法。它可以采用可用于离散时间推断的统计方法,但速度更快,使用的内存更少,并且可以避免因离散而导致的任何错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号