机译:ARGO_CUDA:基于GPU的大型DNA数据集中的基于GPU方法
机译:TrawlerWeb:在线的从头开始基序发现工具,用于下一代测序数据集
机译:BayesMotif:不纯数据集的从头蛋白质分选基序发现
机译:基于软袋的ChIP-seq数据集主题发现
机译:用于生物序列数据集中的基序发现的新算法。
机译:motif发现在生理数据集:一个方法论推导预测元素
机译:图4:(a)一种保守序列,其发生在芯片-SEQ数据集中的46,264个结合位点峰值中的79倍。说明了这种保守序列的突变分布,其中'_'表示该碱度不变; del表示此基础丢失; INS X表示新的基础X插入此基础前面。 (b)列出了几种重复的元素模式。 (c)在第一栏中,示出了由MEME芯片工具(Machanick&Bailey,2011)开采的前五个DNA主题。由CFSP算法发现的相应保守序列列于第二列中。在第三列中,列出了从突变信息转换的特定位置的评分矩阵。 MEME主题与PSSM格式的相似性与PSSM格式之间的相似性通过邮票图章比较工具(Mahony&Benos,2007)计算。这些对相似性的电子值显示在第四列中。 (d)在由GKMSVM描述符聚集的每个组中选择了一个图案,下面列出了CFSP算法的相应主题。 (e)从https://www.encodeproject.org收集的,有附加数据集(文件no:cernff100grl,cenf616irl,conf8.20cer,target:srebf1)。使用MEME工具在每个文件中选择前两个图案,并且我们的算法发现的相应主题如下所示。