首页> 外文OA文献 >Motif Discovery in Physiological Datasets: A Methodology for Inferring Predictive Elements
【2h】

Motif Discovery in Physiological Datasets: A Methodology for Inferring Predictive Elements

机译:生理学数据集中的母题发现:推断预测元素的方法论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, we propose a methodology for identifying predictive physiological patterns in the absence of prior knowledge. We use the principle of conservation to identify activity that consistently precedes an outcome in patients, and describe a two-stage process that allows us to efficiently search for such patterns in large datasets. This involves first transforming continuous physiological signals from patients into symbolic sequences, and then searching for patterns in these reduced representations that are strongly associated with an outcome.Our strategy of identifying conserved activity that is unlikely to have occurred purely by chance in symbolic data is analogous to the discovery of regulatory motifs in genomic datasets. We build upon existing work in this area, generalizing the notion of a regulatory motif and enhancing current techniques to operate robustly on non-genomic data. We also address two significant considerations associated with motif discovery in general: computational efficiency and robustness in the presence of degeneracy and noise. To deal with these issues, we introduce the concept of active regions and new subset-based techniques such as a two-layer Gibbs sampling algorithm. These extensions allow for a framework for information inference, where precursors are identified as approximately conserved activity of arbitrary complexity preceding multiple occurrences of an event.We evaluated our solution on a population of patients who experienced sudden cardiac death and attempted to discover electrocardiographic activity that may be associated with the endpoint of death. To assess the predictive patterns discovered, we compared likelihood scores for motifs in the sudden death population against control populations of normal individuals and those with non-fatal supraventricular arrhythmias. Our results suggest that predictive motif discovery may be able to identify clinically relevant information even in the absence of significant prior knowledge.
机译:在本文中,我们提出了一种在没有先验知识的情况下识别预测性生理模式的方法。我们使用保护原则来确定始终在患者预后之前的活动,并描述了一个分为两个阶段的过程,该过程使我们能够在大型数据集中有效地搜索此类模式。这涉及到首先将来自患者的连续生理信号转换为符号序列,然后在这些减少的表示中搜索与结果密切相关的模式。我们的识别保守活动的策略很可能并非纯粹是偶然地在符号数据中发生的在基因组数据集中发现调控基序。我们以该领域的现有工作为基础,推广了监管主题的概念,并增强了当前的技术以对非基因组数据进行可靠的操作。我们还解决了与主题发现相关的两个重要考虑因素:存在简并性和噪声时的计算效率和鲁棒性。为了解决这些问题,我们介绍了活动区域的概念和新的基于子集的技术,例如两层Gibbs采样算法。这些扩展为信息推断提供了一个框架,其中前体被确定为在多次事件发生之前具有大约复杂性的任意复杂性的保守活动。与死亡的终点有关。为了评估发现的预测模式,我们比较了猝死人群与正常人群和非致命性室上性心律失常人群的突然发作基序的可能性评分。我们的结果表明,即使在没有大量先验知识的情况下,预测性基序发现也可能能够识别临床相关信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号